
Medical Image Analysis 91 (2024) 103014

A
1

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Cell classification with worse-case boosting for intelligent cervical cancer
screening
Youyi Song a, Jing Zou a, Kup-Sze Choi a, Baiying Lei b,∗, Jing Qin a

a Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
b Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, National-Regional Key Technology
Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen
University, Shenzhen, China

A R T I C L E I N F O

MSC:
41A05
41A10
65D05
65D17

Keywords:
Worse-case boosting
Underrepresentative training datasets
Gradient norm
Cervical cell classification
Intelligent cervical cancer screening

A B S T R A C T

Cell classification underpins intelligent cervical cancer screening, a cytology examination that effectively
decreases both the morbidity and mortality of cervical cancer. This task, however, is rather challenging,
mainly due to the difficulty of collecting a training dataset representative sufficiently of the unseen test data,
as there are wide variations of cells’ appearance and shape at different cancerous statuses. This difficulty
makes the classifier, though trained properly, often classify wrongly for cells that are underrepresented
by the training dataset, eventually leading to a wrong screening result. To address it, we propose a new
learning algorithm, called worse-case boosting, for classifiers effectively learning from under-representative
datasets in cervical cell classification. The key idea is to learn more from worse-case data for which the
classifier has a larger gradient norm compared to other training data, so these data are more likely to
correspond to underrepresented data, by dynamically assigning them more training iterations and larger
loss weights for boosting the generalizability of the classifier on underrepresented data. We achieve this
idea by sampling worse-case data per the gradient norm information and then enhancing their loss values
to update the classifier. We demonstrate the effectiveness of this new learning algorithm on two publicly
available cervical cell classification datasets (the two largest ones to the best of our knowledge), and positive
results (4% accuracy improvement) yield in the extensive experiments. The source codes are available at:
https://github.com/YouyiSong/Worse-Case-Boosting.
1. Introduction

Cervical cancer, caused by malignant cells forming in the cervix (Co-
hen et al., 2019), is the fourth most common cancer among women
globally, with the latest estimation of 604 000 new cases and 342 000
deaths in 2020 (Sung et al., 2021). Clinical findings have confirmed
that both the morbidity and mortality of this cancer can be effectively
decreased by cervical cancer screening (Harlan et al., 1991; Bedell
et al., 2020), a cytology examination for which the domain experts
use a microscope to look for malignant cells sampled from the cervix
surface and the surrounding area for detecting cervical cancer before
any symptoms show (Cuzick et al., 2012).

Women who are between 21 and 65 years old are strongly recom-
mended to take a regular screening (Eddy, 1990), as cervical cancer
develops slowly over time. Before the cancer appears in the cervix,
cervical cells go through changes, and then malignant cells start to
grow and spread (Balasubramaniam et al., 2019). Taking the screening
regularly therefore helps in the early detection of cervical cancer, and
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then the proper treatments can be delivered timely. Cervical cancer
screening, however, is labor-intensive and time-consuming, as there
are too many cells in the microscope slide to be examined. It usually
needs 2∼6 weeks to receive the screening result (Shireman et al., 2001).
We hence are urged to develop intelligent systems for cervical cancer
screening, which can substantially alleviate the workload of domain
experts and speed up the screening time (Cao et al., 2021; Pirovano
et al., 2021; Chen et al., 2022c).

A fundamental function of an intelligent cervical cancer screening
system is to predict the type or cancerous status of cervical cells, i.e.
cervical cell classification. This task, however, is rather challenging,
mainly due to the wide variations of cells’ appearance and shape at
different cancerous statuses; see Fig. 1 for example, where we plot eight
koilocytotic cells (one typical type of abnormal cervical cells) to show
the variations. This inherent property makes it very difficult to collect
a training dataset representative enough to the unseen test data (Ma
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Fig. 1. Illustration of the research problem: huge variations of cervical cells’ appear-
ance and shape making training data under-representative to the unseen test data, and
our key idea: boosting the generalizability of the classifier on underrepresented data
by learning more from worse-case data for which the classifier has a larger gradient
norm compared to other training data.

et al., 2020; Cao et al., 2021; Yu et al., 2021; Lin et al., 2021; Pirovano
et al., 2021; Chen et al., 2022c). The classifier then, though trained
properly, often classifies wrongly for cells that are underrepresented
by the training dataset due to the deficiency of corresponding training
data, eventually leading to a wrong screening result that either imposes
unnecessary follow-up tests or delays seeking medical cares (Meng
et al., 2021; Fuzzell et al., 2021).

Recent studies to deal with this difficult problem include mainly
three categories: (1) training dataset construction (Wang et al., 2020;
Zhao et al., 2021; Kong et al., 2022), (2) data weighting (Fang et al.,
2020; Li et al., 2020; Wang et al., 2021) and (3) classifier gener-
alization (Zhang et al., 2021; Cha et al., 2021; Wang et al., 2022).
Training dataset construction-based methods aim at constructing a
representative training dataset by typically removing some collected
data and synthesizing some new data, while data weighting-based
methods attempt to assign a large loss weight to data that corre-
spond to underrepresented data for enhancing their contributions to
the classifier updating. These methods, however, break down when the
distribution of test data is significantly different from that of training
data. Classifier generalization-based methods jointly train the classifier
along with a generalization network for generalizing the classifier to the
underrepresented test data, but they are computationally expensive due
to the high optimization complexity of the bi-level learning framework.

In this paper, we propose a new learning algorithm, called worse-
case boosting, for classifiers effectively learning from under-represe-
ntative datasets in cervical cell classification. The key idea is to learn
more from worse-case data for which the classifier has a larger gradient
norm compared to other training data, and so these data are more likely
to correspond to underrepresented data, via the way of dynamically
assigning them more training iterations and larger loss weights, with
the goal of boosting the generalizability of the classifier on underrep-
resented data, thereby enhancing the classification performance on the
unseen test data that are underrepresented by training dataset. We
achieve this idea by exploiting the gradient norm of the classifier on the
training data: data with a larger gradient norm are assigned a higher
probability to be sampled as worse-case data and a larger loss weight to
update the classifier. This new algorithm therefore neither discards any
collected training data nor requires a significant similarity of test data’s
2

distribution to that of training data, yet not computationally expensive
as it is within the standard gradient descent learning paradigm.

We apply our worse-case boosting algorithm to two publicly avail-
able cervical cell classification datasets, the largest two to the best
of our knowledge. Positive results (4% accuracy improvement) are
obtained in the extensive experiments, which confirms the effectiveness
of this new algorithm. We finally summarize the main contributions of
this work as follows:

• We propose a new learning algorithm for classifiers to effectively
learn from under-representative datasets in cervical cell classifica-
tion It aims at boosting classifier’s generalizability on underrep-
resented data by learning more from underrepresented training
data

• We develop a fast gradient norm approximation method that sub-
stantially alleviates the computational cost and speeds up the train-
ing by using just the last layer of the classifier to compute the
gradient norm for a few batch data

2. Related works

Training dataset construction. This type of methods attempts to con-
struct a training dataset such that the training dataset is representative
enough to the unseen test data, by typically removing some collected
data (Wei et al., 2015; Wang et al., 2020; Zhao et al., 2021) and syn-
thesizing some new data constrained with the collected data (Carlucci
et al., 2019; Benton et al., 2020; Kong et al., 2022). Data removal and
synthesis are often guided by influence functions (Koh and Liang, 2017)
that estimate how the testing loss will be affected if the data was used
for training. In particular, they are implemented via minimizing the
loss measured by the influence functions in a validation dataset. These
methods are straightforward, constructing a new dataset that offers a
better representative capability than the collected dataset, but require
the collected dataset to be very large for ensuring the similarity of
data distributions of the constructed training dataset and the unseen
test data, so they can be prohibitively expensive as data collection here
requires tedious efforts from domain experts.

Data weighting. These methods aim at assigning a large loss weight
to training data that correspond to underrepresented data while a
small one, otherwise. To do so, they usually employ a validation
dataset to learn the loss weights and the classifier by using meta-
learning framework, which consumes more extra data (Van Opbroek
et al., 2018; Fang et al., 2020; Li et al., 2020; Shu et al., 2023b,a).
Another popular implementation is to employ block coordinate decent
optimization framework (Xu and Yin, 2013) that alternatively updates
the loss weights and the parameters of the classifier via minimizing
the weighted loss in the training dataset (Zhao et al., 2019; Wang
et al., 2021; Song et al., 2021; Xie et al., 2023). These methods
work well when the distributions of the training data and test data
mismatch slightly, while often break down under the heavy distribution
mismatch. The latter scenario, however, can be frequently encountered
in cervical cell classification, as cells’ distribution among microscope
slides can be significantly different.

Classifier generalization. They exploit an extra network for generaliz-
ing the classifier to the underrepresented test data (Csurka, 2017; Zhao
et al., 2020; Zhang et al., 2021; Cha et al., 2021; Wu and Zhuang, 2021;
Wang et al., 2022). The generalization network takes the parameters of
the classifier and the test data as the input, and outputs parameters’
change of the classifier from the training dataset to the test data;
each test data then has a different value of classifier’s parameters to
boost the performance. The generalization network is jointly trained
along with the classifier via decreasing the loss value in the training
dataset. These methods, however, are computationally expensive, due
to the optimization complexity of the bi-level learning framework in
nature (Wang et al., 2022; Liu et al., 2022). For an effective training,
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Fig. 2. Illustration of how our idea works: it highlights the contribution of training
data corresponding to underrepresented data to the learning while suppressing other
training data to overrule the learning procedure, thereby approximating the underlying
learning objective more accurately and boosting the classifier’s generalizability on
underrepresented data.

the loss function and optimization scheme usually have to be tailored,
which substantially restricts their scalability and usability.

Difference from other works. Our idea appears to be similar to that
of hard example mining (Shrivastava et al., 2016; Cai et al., 2020;
Zhu et al., 2021) and importance sampling (Johnson and Guestrin,
2018; Chen et al., 2022a; Aljuhani et al., 2022). At a very high level,
all of them indeed use the ‘hard examples’, ‘important examples’ or
worse-case data more during learning. We here highlight four main
differences and developments of our work from them. First, we learn
from all data, whereas hard example mining uses just hard examples
(the top-𝐾 examples with the highest loss), and our algorithm does
not fail to learn when some data are particularly ‘hard’ or with label
noise (Tan et al., 2022). Second, we made a technical advance on
importance sampling (Johnson and Guestrin, 2018; Chen et al., 2022a;
Aljuhani et al., 2022) by dynamically assigning a proper loss weight to
‘important examples’, yielding the performance gains. Third, there is a
substantial conceptual difference. We boost classifier’s generalizability
on underrepresented data by learning more from worse-case data that
have a high probability to be classified worse, thereby coincidentally
exhibiting the similar property to hard or important examples. By con-
trast, hard example mining and importance sampling aim at reducing
learning redundancy by learning from data that are more worth to
learn. Lastly, technical details are different. We exploit gradient norm
to judge worse-case data, not the loss value used in hard example
mining. We also develop a fast gradient norm approximation method
and design a loss boosting mechanism, both of which are not ready
in existing methods (Johnson and Guestrin, 2018; Chen et al., 2022a;
Aljuhani et al., 2022).

3. Methodology

3.1. Problem setup

Let  ∈ [0, 255]𝐻×𝑊 ×3 and  ∈ {0, 1}𝐶 be the space of cervical cell
images and categories, respectively, where 𝐻 , 𝑊 and 3 are the height,
width and channel of the image, and 𝐶 is the number of cells’ categories
to be classified. Given a classifier, 𝑓 ∶  →  , a proper training of it
requires to find appropriate values of its learnable parameters such that
3

the expectation, E(𝐱,𝐲)∼D [𝓁(𝑓 (𝐱), 𝐲)], is sufficiently small, where D stands
for the underlying data distribution and 𝓁 ∶  ×  → [0,∞] denotes
the loss function. Since D is unknown, the expectation in practice is
approximated by its empirical counterpart, 1

𝐾
∑𝐾

𝑘=1 𝓁(𝑓 (𝐱𝑘), 𝐲𝑘), where
𝐾 stands for the data number. This is an unbiased approximation
and can yield zero approximation error when (1) the training data,
{(𝐱𝑘, 𝐲𝑘)}𝐾𝑘=1, are independent and identically distributed (i.i.d.) with
the underlying distribution D, and (2) the 𝐾 is particularly large,
approaching to infinite sometimes (Vapnik, 1999; Goodfellow et al.,
2016).

In cervical cell classification, however, it is very difficult to collect
such a training dataset {(𝐱𝑘, 𝐲𝑘)}𝐾𝑘=1 that generally satisfies the above
two conditions, as there are wide variations of cells’ appearance and
shape at different cancerous statuses. The wide variations first require
a very large 𝐾 to cover the support size of the underlying distribution
D, which is the number of distinct elements of D; see Fig. 2 for the
visual illustration. Second, since we certainly cannot see all cancerous
statuses in the data collection process due to the prohibitive cost to do
so, we cannot acquire data that correspond to all distinct elements of D.
This will lead to the distribution of the collected dataset substantially
deviating from D. Worse still, simply increasing 𝐾 in this case is
more likely to push the dataset’s distribution further different from D.
Eventually, the collected training dataset is under-representative, i.e.
the collected training data are not i.i.d. with D and also 𝐾 is not large
enough.

With under-representative training datasets, the above standard
learning paradigm breaks down; training the classifier with a small
1
𝐾
∑𝐾

𝑘=1 𝓁(𝑓 (𝐱𝑘), 𝐲𝑘) is no longer a guarantee for a small value of
E(𝐱,𝐲)∼D [𝓁(𝑓 (𝐱), 𝐲)], let along a small value of 𝓁(𝑓 (𝐱), 𝐲) for the unseen
data. Our idea is to boost the generalizability of the classifier on
underrepresented data by learning more from worse-case data for
which the classifier has a higher gradient norm compared to other
training data, and so these data are more likely to correspond to
underrepresented data, via the way of dynamically assigning them
more training iterations and larger loss weights. This idea can be
expressed as follow,

argmin
𝑓∈

E(𝐱,𝐲)∼D𝑤

[

𝑏𝑤(𝐱, 𝐲)𝓁(𝑓 (𝐱), 𝐲)
]

, (1)

where  is the function space of 𝑓 , specified by the classifier’s architec-
ture, D𝑤 stands for the distribution of worse-case data, and 𝑏𝑤 denotes
the assigned loss weight. Note that D𝑤 assigns a high probability to
worse-case data to be sampled for training, which fulfills the function
of assigning more training iterations.

This idea first provides a chance to approximate the expectation
better, which can be seen from the following result,

E(𝐱,𝐲)∼D
[

𝓁(𝑓 (𝐱), 𝐲)
]

= lim
𝐾→∞

1
𝐾

𝐾
∑

𝑘=1
𝑝D (𝐱𝑘, 𝐲𝑘)𝓁(𝑓 (𝐱𝑘), 𝐲𝑘)

≗ lim
𝐾→∞

1
𝐾

𝐾
∑

𝑘=1
𝐼D𝑤

(𝐱𝑘, 𝐲𝑘)𝑏𝑤(𝐱𝑘, 𝐲𝑘)𝓁(𝑓 (𝐱𝑘), 𝐲𝑘)

= E(𝐱,𝐲)∼D𝑤

[

𝑏𝑤(𝐱, 𝐲)𝓁(𝑓 (𝐱), 𝐲)
]

, (2)

where 𝑝D (𝐱𝑘, 𝐲𝑘) denotes the probability of the occurrence of the
data (𝐱𝑘, 𝐲𝑘) under D, and 𝐼D𝑤

(𝐱𝑘, 𝐲𝑘) stands for the assigned iteration
number (normalized) to (𝐱𝑘, 𝐲𝑘) under D𝑤 (it equals 𝑝D𝑤

(𝐱𝑘, 𝐲𝑘) when
𝐾 → ∞). The ‘circle’ equality happens when 𝐼D𝑤

(𝐱𝑘, 𝐲𝑘)𝑏𝑤(𝐱𝑘, 𝐲𝑘) =
𝑝D (𝐱𝑘, 𝐲𝑘), and we therefore achieve an opportunity to approximate
E(𝐱,𝐲)∼D [𝓁(𝑓 (𝐱), 𝐲)] better by finding a proper D𝑤 and 𝑏𝑤. By con-
trast, the equality E(𝐱,𝐲)∼D [𝓁(𝑓 (𝐱), 𝐲)] = lim𝐾→∞

1
𝐾
∑𝐾

𝑘=1 𝓁(𝑓 (𝐱𝑘), 𝐲𝑘) for
under-representative training data happens only when D is a uniform
distribution, which is obviously impossible, as there is a different
probability of different cancerous statuses occurring.

Via Eq. (1), we also can use less training data to yield the same
approximation error, which comes by using Jensen’s inequality (Need-
ham, 1993),

E(𝐱,𝐲)∼D
[

𝓁(𝑓 (𝐱), 𝐲)
]

≤ E(𝐱,𝐲)∼D
[
𝑝D𝑤

(𝐱, 𝐲)
𝑏𝑤(𝐱, 𝐲)𝓁(𝑓 (𝐱), 𝐲)

]

𝑝D (𝐱, 𝐲)
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Fig. 3. The illustrative pipeline of the proposed worse-case boosting algorithm: at each iteration during training, first sampling worse-case data per the gradient norm information
(producing the sampling distribution 𝐩 by normalizing the gradient norm vector 𝐠), then updating the classifier with the boosted loss 𝑏𝓁, and finally updating the gradient norm of
the training data (computing the gradient norm ‖∇𝜃𝐿𝓁‖ for a few batch data that are randomly sampled per the uniform distribution, fitting the regression model by the computed
norm, and predicting the gradient norm, 𝐠∗𝑘, for the remaining training data).
= E(𝐱,𝐲)∼D𝑤

[

𝑏𝑤(𝐱, 𝐲)𝓁(𝑓 (𝐱), 𝐲)
]

. (3)

The first equality happens when 𝑝D (𝐱, 𝐲) = 𝑝D𝑤
(𝐱, 𝐲)𝑏𝑤(𝐱, 𝐲) for all

(𝐱, 𝐲) ∈  ×  . The optimization bound of our approximation hence
is tighter than the standard approximation, which reduces the de-
pendence on the data number. A visual illustration of why Eq. (1)
works is shown in Fig. 2; conceptually, it highlights the contribution of
underrepresented data to the learning while suppressing other data to
overrule the learning, approximating the underlying learning objective
better and boosting the classifier’s generalizability on underrepresented
data.

3.2. Worse-case boosting

We now present our worse-case boosting, an effective algorithm to
solve Eq. (1) that effectively finds the proper D𝑤 and 𝑏𝑤; see Fig. 3
for the illustrative pipeline. In brief, at each training iteration, it first
samples worse-case data and then boosts their loss values to update the
classifier. It uses the gradient norm of the classifier on the training data
to approximate the sampling distribution and to boost the loss value.
It finally updates the gradient norm of training data and starts the next
iteration until the training ends. The details are presented below.

Worse-case data sampling. At each iteration during training, we first
sample worse-case data to update the classifier, i.e. updating the value
of the classifier’s parameters. Two commonly used criteria to judge
worse-case data are the loss value, 𝓁(𝑓 (𝐱𝑘), 𝐲𝑘), and the gradient norm,
‖∇𝜃𝓁(𝑓 (𝐱𝑘), 𝐲𝑘)‖, where 𝜃 denotes classifier’s parameters that shape 𝑓 .
A larger value of them indicates that the data is more likely to be a
worse-case data. We here use the gradient norm, because it directly
works on the classifier. Data with a large loss value do not certainly
have a large gradient norm (note that the gradient is the derivative
of the loss), and then change 𝜃 less than data with a large gradient
norm (Zhao et al., 2022). Therefore, sampling worse-case data that
have a large gradient norm, rather than a large loss value, exposes
more effective information to the classifier for adjusting its parameters’
value during training. Here note that some issues, e.g., data imbalance
can lead to a large gradient norm for some categories but this cannot
affect the sampling procedure as the imbalance also makes the training
dataset under-representative to the unseen test data.

In detail, we first evaluate the gradient norm for each training data,
then normalize them,

𝑝(𝐱𝑘, 𝐲𝑘) =
‖∇𝜃𝓁(𝑓 (𝐱𝑘), 𝐲𝑘)‖

∑𝐾 , (4)
4

𝑛=1 ‖∇𝜃𝓁(𝑓 (𝐱𝑛), 𝐲𝑛)‖
and finally sample worse-case data according to the pseudo-distribution,
(

𝑝(𝐱1, 𝐲1),… , 𝑝(𝐱𝐾 , 𝐲𝐾 )
)

; specifically, for sampling 𝑁 worse-case data,
we randomly choose 𝑁 data from the training dataset without re-
placement, while the data (𝐱𝑘, 𝐲𝑘) has the probability of 𝑝(𝐱𝑘, 𝐲𝑘) to
be chosen. It hence gives a large probability for training data with a
large gradient norm to be sampled. This sampling procedure creates
more opportunities for the classifier for learning from worse-case data,
while still keeping the chance for learning from other data, allowing
the classifier to enhance its classification ability per its behavior on the
training data by learning from the most suitable data stochastically.

Loss boosting. Once worse-case data have been sampled, we update
the classifier as

𝜃(𝑡+1) ← 𝜃(𝑡) − 𝛾 (𝑡)∇𝜃(𝑡)

( 𝐵
∑

𝑖=1
𝑏(𝑡)𝑖 𝓁

(

𝑓 (𝐱𝑖), 𝐲𝑖|𝜃(𝑡)
)

)

, (5)

where 𝛾 (𝑡) denotes the learning rate at the 𝑡th training iteration, and
𝐵 is the size of the batch data used to update the classifier. 𝑏(𝑡)𝑖
is the boosting weight, the normalized gradient norm for the batch
data; 𝑏𝑖 = ‖∇𝜃𝓁(𝑓 (𝐱𝑖), 𝐲𝑖)‖∕

∑𝐵
𝑛=1 ‖∇𝜃𝓁(𝑓 (𝐱𝑛), 𝐲𝑛)‖. The normalization

aims at maintaining a stable update of the classifier, avoiding a large
fluctuation of the length of the classifier’s gradient descent on the data.

This loss boosting scheme further forces the classifier to learn from
worse-case data more for boosting the training quality again. It assigns
a large loss weight 𝑏𝑖 for the data (𝐱𝑖, 𝐲𝑖) if the classifier has a large
gradient norm on the data, which forces the performance gain by the
classifier update coming more from the gradient of such data, boosting
the contribution of the data to the classifier updating. This scheme
eventually boosts the learning opportunities brought by the worse-case
data sampling that adjusts the learning order of the training data and
assigns more learning iterations to worse-case data, but not directly
works for changing the value of the classifier’s parameters.

Feasibility analysis. We below present why the above algorithm is
feasible to find the proper D𝑤 and 𝑏𝑤 for Eq. (1). Learning in na-
ture is to find appropriate values of classifier’s parameters such that
E(𝐱,𝐲)∼D [𝓁(𝑓 (𝐱), 𝐲)] is sufficiently small. With such a proper learning,
𝓁(𝑓 (𝐱), 𝐲) should be accordingly small for all (𝐱, 𝐲) ∈  ×  . Our
algorithm changes the values of the classifier’s parameters by learning
more from worse-case data controlled by D𝑤 and 𝑏𝑤. If D𝑤 and 𝑏𝑤
have not been assigned properly, i.e. 𝐼D𝑤

(𝐱, 𝐲)𝑏𝑤(𝐱, 𝐲) deviates far from
𝑝D (𝐱, 𝐲) , then there are some data that are classified far worse than
other data, as in that case some training data are over-weighted while
some data are under-weighted. These worse data generally will have a



Medical Image Analysis 91 (2024) 103014Y. Song et al.
large gradient norm, as they can be classified far better. Our algorithm
next will modify D𝑤 and 𝑏𝑤 at the next training iteration, sample more
of these data, and assign a larger loss weight to them to modify the loss
weight for boosting the classification performance on them. Eventually,
D𝑤 and 𝑏𝑤 will be modified properly to yield a small 𝓁(𝑓 (𝐱), 𝐲) for all
data (𝐱, 𝐲) when there are enough training iterations. Note that D𝑤 and
𝑏𝑤 ideally should both converge to 𝟏, but their accumulating effect
on learning will be equivalent to that of their proper counterparts,
i.e. ∑𝑇

𝑡=1 𝐼
(𝑡)
D𝑤

(𝐱, 𝐲)𝑏(𝑡)𝑤 (𝐱, 𝐲) ≈ 𝑇 𝑝D (𝐱, 𝐲), where 𝑇 denotes the iteration
number of the training.

Gradient norm approximation. Our worse-case boosting algorithm
requires the gradient norm of the classifier on the training data for
worse-case data sampling and loss boosting as well. Computing the
gradient norm, however, is costly. We have to pass the whole training
dataset to the classifier for evaluating the gradient norm at each update
step, so there are extra 𝐾× backward operations, where 𝐾 denotes the
number of the training data. Furthermore, for a large classifier, this
computation will consume too many memory footprints. We hence de-
velop a fast gradient norm approximation method that largely decreases
the memory consumption and running time.

The idea is to use just the last layer of the classifier to compute the
gradient norm for a few batch data, and then employ a linear regression
model (Montgomery et al., 2021) to predict the gradient norm for the
remaining data. We hence can largely reduce the memory footprint and
running time. We now only need extra 𝑀× backward operations for the
last layer, where 𝑀 is the number of the data used for computing the
gradient norm. Since our algorithm just requires knowing the ratio of
the data’s gradient norm (both the worse-case data sampling and loss
boosting steps are decided by the ratio only), we can choose a 𝑀 that is
far less than 𝐾; the empirical findings show that 𝑀 < 0.01𝐾 still works
well (see Section 4).

Specifically, we use a vector 𝐠 ∈ R𝐾 to store the gradient norm of
the whole training data, which is initialized as a very large value (1010
here). We then randomly sample 𝑀 training data per the uniform dis-
tribution and compute their gradient norms, {‖∇𝜃𝐿𝓁(𝑓 (𝐱𝑚), 𝐲𝑚)‖}

𝑀
𝑚=1,

where 𝜃𝐿 stands for the parameter of the last layer of the classifier. We
next train a linear regression model ℎ ∶ R2 → R by using the gradient
norm information of these sampled 𝑀 data for predicting the gradient
norm of the remaining training data,

𝐠∗𝑘 = ℎ1𝐠𝑘 + ℎ2
𝐾
∑

𝑘=1
𝐠𝑘, (6)

where 𝐠𝑘 is the value of the 𝑘th entry of 𝐠, and its targeted value
for the regression is ‖∇𝜃𝐿𝓁(𝑓 (𝐱𝑘), 𝐲𝑘)‖. This model assumes that the
gradient norm is a linear combination of 𝐠𝑘, the gradient norm at the
last approximation step, and ∑𝐾

𝑘=1 𝐠𝑘 which reflects the uncertainty of
the gradient norm among the whole training dataset. Using a linear
model, importantly, gives a good balance between the approximation
accuracy and the computational complexity We finally update the norm
vector 𝐠 by the fitted 𝐠∗𝑘 for 𝑘 ∉ [𝑀] and ‖∇𝜃𝐿𝓁(𝑓 (𝐱𝑘), 𝐲𝑘)‖ for 𝑘 ∈ [𝑀],
where [𝑀] is the index set of the sampled 𝑀 data.

Algorithm summary. The pseudo-code of our worse-case boosting
is presented in Table 1. In summary, we first initialize the gradient
norm vector 𝐠 as a very large value (1010). Next, at each step of the
classifier update, we normalize 𝐠 to simulate the sampling distribution
𝐩, under which we sample worse-case data for updating the classifier
by the boosted loss. We then randomly sample 𝑀 data to compute
their gradient norms, based on which we train the regression model to
predict the gradient norm for the remaining data. Finally, we update 𝐠
and start a new update step until reaching the update number.

4. Experiments

By employing two publicly available datasets, we here experimen-
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tally demonstrate that the proposed worse-case boosting algorithm is
Table 1
The pseudo-code of our worse-case boosting algorithm.
1: 𝐠 ← 1010 ⊳ gradient norm vector initialization
2: for number of training iterations do
3: 𝐩 ← 𝑁(𝐠) ⊳ normalizing 𝐠 to get the distribution
4: [𝐼] ← 𝐩 ⊳ getting the sampling indexes per 𝐩
5: {(𝐱𝑖 , 𝐲𝑖)} ← [𝐼] ⊳ worse-case data sampling
6: 𝓁(𝑓 (𝐱𝑖), 𝐲𝑖) ⊳ data forward and loss computing
7: 𝑏𝑖 ← {𝐠, [𝐼]} ⊳ loss boosting weight computing
8: ∑

𝑏𝑖𝓁(𝑓 (𝐱𝑖), 𝐲𝑖) ⊳ getting the boosted loss
9: 𝜃 ← (𝜃,∇𝜃 ) ⊳ updating the classifier
10: {(𝐱𝑚 , 𝐲𝑚)} ← [𝑀] ⊳ data sampling (uniformly)
11: 𝓁(𝑓 (𝐱𝑚), 𝐲𝑚) ⊳ data forward and loss computing
12: 𝜃𝐿 ← 𝜃 ⊳ getting the last layer of the classifier
13: ∇𝜃𝐿𝓁(𝑓 (𝐱𝑚), 𝐲𝑚) ⊳ loss backward for the last layer
14: {‖∇𝜃𝐿𝓁(𝑓 (𝐱𝑚), 𝐲𝑚)‖} ⊳ gradient norm computing
15: ℎ ← {‖∇𝜃𝐿𝓁(𝑓 (𝐱𝑚), 𝐲𝑚)‖} ⊳ regression model fitting
16: 𝐠∗𝑘 ← {ℎ, 𝐠} ⊳ gradient norm predicting
17: 𝐠 ← {𝐠∗ , ‖∇𝜃𝐿𝓁(𝑓 (𝐱𝑚), 𝐲𝑚)‖} ⊳ norm update
18: end for

Fig. 4. The label distribution of the employed two datasets, with (a) for the SIPaKMeD
dataset and (b) for the LCPSI dataset.

effective in learning from under-representative training datasets for cer-
vical cell classification. We evaluate this new algorithm with different
backbone networks and in different learning settings. We also compare
it against several competitive methods and analyze its working mecha-
nism with extensive experiments. In all experiments, the positive results
are obtained, with 4% improvement on the classification accuracy
against existing methods on average, which confirm the effectiveness
of this new algorithm.

4.1. Experimental setup

Datasets. We term the employed two datasets as SIPaKMeD and LCPSI,
respectively. They are publicly available and commonly used in the
evaluation of cervical cell classification algorithms; among all publicly
available datasets, they are the largest two to the best of our knowledge.

∙ SIPaKMeD: This dataset contains 966 microscope images with
Pap smear staining (Plissiti et al., 2018).1 From them, 4049 cervical
cells are manually selected for 5 categories: (1) dysketarotic cells
(abnormal), (2) koilocytotic cells (abnormal), (3) metaplastic cells (ab-
normal), (4) parabasal cells (benign), and (5) superficial-intermediate
cells (normal).

∙ LCPSI : This dataset contains 963 microscope images with Pap
smear staining (Hussain et al., 2020).2 From them, 4978 cervical
cells are manually selected for 4 categories: (1) high squamous intra-
epithelial cells (abnormal), (2) low squamous intra-epithelial cells (ab-
normal), (3) negative intra-epithelial cells (normal), and (4) squamous
carcinoma cells (abnormal).

1 Available on the web site https://www.cs.uoi.gr/~marina/sipakmed.
html.

2 Available on the web site https://data.mendeley.com/datasets/
zddtpgzv63/4.

https://www.cs.uoi.gr/~marina/sipakmed.html
https://www.cs.uoi.gr/~marina/sipakmed.html
https://data.mendeley.com/datasets/zddtpgzv63/4
https://data.mendeley.com/datasets/zddtpgzv63/4
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Fig. 5. Intensity distributions of the training and testing data in the 5-fold cross-validation for the SIPaKMeD dataset; 5 plots are for the 5 folds, and the 𝑥-axis represents the
average intensity of the cell while the 𝑦-axis represents the probability of the occurrence.
Fig. 6. Intensity distributions of the training and testing data in the 5-fold cross-validation for the LCPSI dataset; 5 plots are for the 5 folds, and the 𝑥-axis represents the average
intensity of the cell while the 𝑦-axis represents the probability of the occurrence.
Table 2
Performance (classification accuracy, %) improvement results over the vanilla baselines:
Res18 (He et al., 2016), Res50 (He et al., 2016), MbNet (Howard et al., 2017), AtNet
(Vaswani et al., 2017), and ViT (Dosovitskiy et al., 2021), with the CE loss (Jadon,
2020) and Focal loss (Lin et al., 2017) for training; the better results are highlighted
by bold.

SIPaKMeD Dataset LCPSI Dataset

Vanilla Ours Vanilla Ours

Res18 CE 87.2 ± 1.3 91.2 ± 1.0 80.9 ± 2.5 84.5 ± 1.8
Focal 86.9 ± 1.1 91.7 ± 1.0 80.3 ± 2.3 84.6 ± 1.7

Res50 CE 87.7 ± 1.4 90.9 ± 1.1 80.5 ± 1.9 85.2 ± 1.5
Focal 88.1 ± 1.2 91.4 ± 1.0 81.3 ± 2.1 84.7 ± 1.9

MbNet CE 86.9 ± 1.5 90.4 ± 1.1 80.1 ± 2.0 84.2 ± 1.6
Focal 87.4 ± 1.4 90.8 ± 1.1 80.3 ± 1.9 84.7 ± 1.6

AtNet CE 87.9 ± 1.3 91.2 ± 1.0 81.2 ± 1.9 85.3 ± 1.6
Focal 88.1 ± 1.2 91.1 ± 1.0 81.4 ± 2.0 85.6 ± 1.7

ViT CE 88.3 ± 1.2 91.5 ± 0.9 81.4 ± 1.8 85.7 ± 1.5
Focal 88.7 ± 1.3 91.4 ± 1.0 81.9 ± 2.0 85.4 ± 1.6

Fig. 4 shows the label distribution of these two datasets, from which
we can see that there does not exist the data imbalance issue in both
two datasets.

Implementation details. The proposed worse-case boosting algorithm
has the same implementation in the two datasets. Specifically, we resize
the cervical cell images to 64 × 64. We apply the random flip in
horizontal and vertical directions with the probability both equal to 0.5.
We set the batch size to 32, run 120 epochs, and employ Adam (Kingma
and Ba, 2014) with the initial learning rate of 0.0003 as the optimizer
for training. We sample 320 data in each worse-case data sampling
step and 160 data under the uniform distribution in each gradient
norm approximation step; 10× and 5× of the batch size, respectively.
We clamp the boosting weight within [0.8, 1.2] to avoid the network
update being dominated by some data, which ensures that all data can
be properly learned. Note that we demonstrate the choice of the data
size in the worse-case data sampling and gradient norm approximation
steps and the value of the boosting weight cutoff in Section 4.3. The
full implementation details can be found in the released source codes.3

4.2. Experimental results

Performance improvement over baselines. We first show the perfor-
mance improvement of the proposed algorithm over different baselines.

3 Available on the website https://github.com/YouyiSong/Worse-Case-
Boosting.
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We employ five commonly-used classification networks: Res18 (He
et al., 2016), Res50 (He et al., 2016), MobileNet (denoted by Mb-
Net) (Howard et al., 2017), Attention network (denoted by AtNet)
(Vaswani et al., 2017), and ViT (Dosovitskiy et al., 2021) as the
backbone networks. They have 11.17M, 23.49M, 3.20M, 25.43M and
23.65M learnable parameters, respectively, with the inference time of
the flops as 2.22G, 5.19G, 0.68G, 0.36G and 1.54G. The detailed archi-
tectures of them can be found in the released source codes. In addition,
we train them under two typical loss functions: CE loss (Jadon, 2020)
and focal loss (Lin et al., 2017).

All ten vanilla baselines have the same learning setting as ours, e.g.,
the same optimizer, batch size, training epochs, etc., (see Section 4.1),
while trained by the standard manner. We conduct the experiment by
using 5-fold cross-validation; 4-fold for training and the remaining 1-
fold for testing. Figs. 5 and 6 show the intensity distributions of the
training and testing data in the 5 folds for the SIPaKMeD dataset and
LCPSI dataset, respectively, in all of which the training data clearly
exhibit a different distribution from that of the testing data, reflecting
that the under-representative property of the training data can be
frequently encountered in cervical cell classification.

The results are presented in Table 2, in which we report the mean
and standard deviation of the classification accuracy of methods among
5 folds. The accuracy means the fraction of the cervical cells to be
correctly classified in a percentage manner. We can see from Table 2
that the proposed algorithm works consistently better than the base-
line (denoted by vanilla) in all scenarios. This finding suggests that
our algorithm is effective and generic, not restricted to the specified
network architectures of the classifier and loss functions. We can also
see that the accuracy fluctuates among the learning scenarios by using
different backbone networks and loss functions, which indicates that
the classification accuracy of our algorithm can be further improved
by developing advanced or tailored network architectures and loss
functions.

Performance improvement over SOTAs. We now show that our
worse-case boosting algorithm also works better than SOTAs. To do
so, we compare our algorithm against six competitive methods: Wang
et al. (2020), Kong et al. (2022), Fang et al. (2020), Zhang et al.
(2021), Zhu et al. (2021), and Aljuhani et al. (2022), denoted by
DR, DS, DW, CG, HEM, and IS, the abbreviations of data removal,
data synthesis, data weighting, classifier generalization, hard example
mining, and importance sampling, respectively. DR and DS belong
to training dataset construction-based methods. They construct the
training dataset by removing the training data that cannot help or
even hurt the performance improvement which is evaluated via influ-
ence functions, and by synthesizing training data via influence-based
data relabeling, respectively. DW is a data weighting-based method.

https://github.com/YouyiSong/Worse-Case-Boosting
https://github.com/YouyiSong/Worse-Case-Boosting
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Table 3
Performance (classification accuracy, %) improvement results over the SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022), DW (Fang et al., 2020), CG (Zhang et al., 2021),
HEM (Zhu et al., 2021), and IS (Aljuhani et al., 2022), while BL denotes the baseline; we highlight the best results with bold and color the second best results with blue. For
simplicity, we use the abbreviation of the cells’ category (the first three letters).

SIPaKMeD Dataset LCPSI Dataset

Dys. Koi. Met. Par. Sup. Ave. Hsq. Lsq. Nei. Sqc. Ave.

BL 79.7 ± 2.5 88.4 ± 1.4 89.2 ± 1.3 96.7 ± 0.7 86.2 ± 1.5 88.3 ± 1.2 56.1 ± 8.7 95.2 ± 0.5 92.8 ± 0.9 83.4 ± 1.9 81.4 ± 1.8
DR 82.3 ± 2.6 86.4 ± 1.4 90.6 ± 1.3 96.7 ± 0.6 87.2 ± 1.4 88.4 ± 1.1 57.7 ± 7.2 96.3 ± 0.4 94.2 ± 0.8 82.7 ± 1.7 82.4 ± 2.0
DS 85.3 ± 2.2 86.4 ± 1.2 90.1 ± 1.3 97.3 ± 0.6 89.4 ± 1.3 89.7 ± 1.1 57.2 ± 7.7 94.8 ± 0.4 95.3 ± 0.6 81.7 ± 1.5 82.2 ± 1.9
DW 86.9 ± 2.4 87.4 ± 1.3 91.3 ± 1.2 97.2 ± 0.5 88.7 ± 1.3 90.1 ± 1.1 59.7 ± 7.1 95.5 ± 0.4 94.4 ± 0.7 83.8 ± 1.5 83.2 ± 1.9
CG 84.6 ± 2.1 89.5 ± 1.3 91.4 ± 1.2 96.7 ± 0.6 90.2 ± 1.3 90.8 ± 1.0 59.8 ± 7.4 96.8 ± 0.4 93.7 ± 0.7 84.7 ± 1.4 83.8 ± 1.9
HEM 82.1 ± 2.5 87.1 ± 1.3 90.2 ± 1.3 96.9 ± 0.7 86.4 ± 1.4 88.6 ± 1.1 57.1 ± 7.6 96.4 ± 0.4 93.1 ± 0.8 83.9 ± 1.5 82.2 ± 2.1
IS 83.1 ± 2.2 87.3 ± 1.4 90.2 ± 1.3 97.1 ± 0.7 89.7 ± 1.3 89.8 ± 1.1 58.1 ± 7.3 96.1 ± 0.4 93.0 ± 0.9 83.6 ± 1.5 82.6 ± 1.9
Ours 87.9 ± 2.0 92.4 ± 1.1 93.1 ± 1.0 97.6 ± 0.5 91.2 ± 1.2 91.5 ± 0.9 60.8 ± 6.9 97.1 ± 0.4 97.2 ± 0.5 86.4 ± 1.2 85.7 ± 1.5
Fig. 7. Qualitative comparison of our worse-case boosting to the SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022), DW (Fang et al., 2020), CG (Zhang et al., 2021), HEM (Zhu
et al., 2021), and IS (Aljuhani et al., 2022), while BL denotes the baseline; the boxed

√

and × stand for the image being classified correctly and incorrectly, respectively. Cells
in the left plot are sampled from the SIPAKMeD dataset and those in the right plot are sampled from the LCPSI dataset. We organized these cells, from left to right in each plot,
according to their representative level measured by the intensity similarity (the ratio of the mean image intensity appears in the training dataset, so cells with a low representative
level are more difficult to classify). Note that we resized all images to the same one for a better view.
Table 4
Statistical significance (p-value) results by 𝑡2-test on the paired classification accuracy in the 5-fold cross-validation subsets of
our worse-case boosting algorithm over the SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022), DW (Fang et al., 2020),
CG (Zhang et al., 2021), HEM (Zhu et al., 2021), and IS (Aljuhani et al., 2022), while BL denotes the baseline. For simplicity,
we use the abbreviation of the cells’ category (the first three letters).

SIPaKMeD Dataset LCPSI Dataset

Dys. Koi. Met. Par. Sup. Ave. Hsq. Lsq. Nei. Sqc. Ave.

BL 0.021 0.025 0.012 0.027 0.039 0.021 0.022 0.019 0.026 0.028 0.023
DR 0.014 0.015 0.029 0.033 0.030 0.017 0.021 0.026 0.022 0.024 0.027
DS 0.019 0.022 0.037 0.031 0.032 0.029 0.020 0.029 0.023 0.026 0.022
DW 0.017 0.019 0.034 0.037 0.038 0.028 0.034 0.032 0.027 0.035 0.029
CG 0.025 0.026 0.022 0.035 0.037 0.030 0.039 0.022 0.034 0.031 0.034
HEM 0.018 0.025 0.037 0.039 0.036 0.023 0.024 0.021 0.024 0.027 0.024
IS 0.015 0.024 0.030 0.026 0.034 0.027 0.029 0.028 0.020 0.021 0.025
It jointly learns the loss weights and the classifier via minimizing the
weighted loss under the block coordinate descent optimization frame-
work. CG belongs to the classifier generalization-based methods. It
jointly trains the classifier and the generalization network to minimize
the loss function in the training data under the bi-level optimization
framework. HEM is a hard example mining-based method. It uses just
the top-𝐾 examples that have the largest loss value from the batch
data to update the classifier. In our experiment, we set 𝐾 to 16, half
of the batch size, according to the classification performance. IS is an
important sampling-based method. It samples the training data per the
distribution of the classification uncertainty.

We conduct the experiment by using the ViT as the backbone
network and CE loss for training (the default setting in the following
experiments). We produce the results by using the same 5-fold cross-
validation mentioned above, 4-fold for training and 1-fold for testing,
except for DR and DS for which we choose 3-fold for training, 1-fold
for computing the influence functions, and the remaining 1-fold for
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testing. All compared methods have the same learning setting as ours,
such as the optimizer, the batch size and training epochs (described
in Section 4.1). The results are presented in Table 3, where we report
the mean and standard deviation of the classification accuracy for each
category and the average of all categories. We can see from Table 3 that
our worse-case boosting algorithm produced a more accurate result for
all categories than all the compared methods in the two datasets. This
experimental finding suggests that our algorithm improves the training
quality better than the compared methods: DR (Wang et al., 2020),
DS (Kong et al., 2022), DW (Fang et al., 2020), CG (Zhang et al., 2021),
HEM (Zhu et al., 2021), and IS (Aljuhani et al., 2022), which effectively
demonstrates the validity of our algorithm in cervical cell classification
with under-representative training datasets. This finding also reflects
that the classification performance can be enhanced by progressively
boosting the training performance on the worse-case training data.
We here clarify that the classification performance can be further
improved by using data argumentation, transfer learning and model
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Fig. 8. Performance (classification accuracy, %) improvement results over the SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022), DW (Fang et al., 2020), CG (Zhang et al.,
2021), HEM (Zhu et al., 2021), and IS (Aljuhani et al., 2022), with 5 tries in each of which the cross-validation data are randomly split again, while BL denotes the baseline; the
small solid red dots represent the real accuracy value while the big shaded areas are just for a better view.
Fig. 9. Performance (the probability of classified incorrectly) improvement results on underrepresented data over the SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022),
DW (Fang et al., 2020), CG (Zhang et al., 2021), HEM (Zhu et al., 2021), and IS (Aljuhani et al., 2022), with the left plot for the SIPaKMeD dataset and the right plot for the
LCPSI dataset (BL: the baseline); the dashed lines: results at the 10-quantile, and the solid lines: results at the 50-quantile (axes: learning performance vs. training epoch).
ensemble techniques; readers who are interested in this please refer to
the articles (Rahaman et al., 2021; Pramanik et al., 2022).

Fig. 7 shows 20 visual examples for the qualitative comparison of
our algorithm to the SOTAs. For each dataset, we organize examples,
from left to right, per the representative level measured by the intensity
similarity (the ratio of the mean image intensity that appears in the
training dataset). We can see from Fig. 7 that for images with the
lowest representative level, only our worse-case boosting works, all
the compared methods fail. This finding demonstrates again that our
algorithm can effectively learn from under-representative datasets and
learns better than the compared SOTAs.

Statistical significance over SOTAs. We here show that the perfor-
mance improvement of our algorithm over the compared SOTAs is also
statistically significant. To do so, we employ the same experimental
setting as the above experiment and use 5-fold cross-validation (4-fold
vs. 1-fold for training and testing while 3-fold vs. 1-fold vs. 1-fold for DR
and DS), and the same learning setting (the optimizer, the batch size
and training epochs). We conduct 𝑡2-test on the paired classification
accuracy obtained in the 5-fold cross-validation subsets. The 𝑝-value
results are reported in Table 4, from which we can see that all 𝑝-value
results are less than 0.05. This experimental evidence suggests that the
performance improvement of our worse-case boosting algorithm over
the compared SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022),
DW (Fang et al., 2020), CG (Zhang et al., 2021), HEM (Zhu et al., 2021),
and IS (Aljuhani et al., 2022), reaches the statistical significance, which
effectively confirms that our worse-case boosting algorithm makes the
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classifier learn better from under-representative training datasets in
cervical cell classification than the compared SOTAs.

More comprehensive comparison over SOTAs. To further investigate
the performance improvement of our method over the SOTAs, we
here conduct a more comprehensive experiment. We randomly split
the 5-fold cross-validation data again, and produce the classification
results of the methods using the same learning setting. The classifi-
cation accuracy results of 5 tries are presented in Fig. 8. We can see
from Fig. 8 that our method consistently works better than all the
compared SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022),
DW (Fang et al., 2020), CG (Zhang et al., 2021), HEM (Zhu et al., 2021),
and IS (Aljuhani et al., 2022), though the exact performance gains
are different when the 5-fold cross-validation data are different. This
experimental finding demonstrates again that our method learns better
from under-representative training data and that it is more suitable for
cervical cell classification.

Performance improvement on underrepresented data. We below
show that our algorithm learns the underrepresented data better than
the compared SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022),
DW (Fang et al., 2020), CG (Zhang et al., 2021), HEM (Zhu et al., 2021),
and IS (Aljuhani et al., 2022), by tracing the learning performance on
the test data during training. We conduct the experiment by using the
same 5-fold cross-validation mentioned above, 4-fold for training and
the remaining 1-fold for testing, except for DR and DS for which we
use 3-fold for training, 1-fold for computing the influence functions,
and 1-fold for testing. The mean results on the 5-fold cross-validation
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Table 5
Performance (classification accuracy, %) improvement results with various under-
representative levels of the training datasets over the SOTAs: DR (Wang et al., 2020),
DS (Kong et al., 2022), DW (Fang et al., 2020), CG (Zhang et al., 2021), HEM (Zhu
et al., 2021), and IS (Aljuhani et al., 2022), with 10 tries, while BL denotes the baseline;
we highlight the best results with bold and color the second best results with blue.

SIPaKMeD Dataset LCPSI Dataset

worst mean best worst mean best

BL 82.8 85.7 87.6 76.5 78.9 81.3
DR 83.1 86.4 88.0 78.2 79.2 81.9
DS 84.9 88.1 90.2 77.4 79.9 82.3
DW 84.3 86.6 88.7 79.3 80.9 82.9
CG 83.9 88.2 90.2 79.2 81.4 83.1
HEM 83.4 86.1 88.4 77.3 79.5 81.6
IS 83.6 86.9 89.1 77.0 80.1 82.1
Ours 87.6 90.1 91.8 81.6 82.7 84.4

are shown in Fig. 9, with (a) for the SIPaKMeD dataset and (b) for the
LCPSI dataset, produced by the testing data that are classified wrongly.

We report the probability of the data being incorrectly classified
at the 10-quantile (the dash lines) and 50-quantile (the solid lines).
Here note that data classified incorrectly are more likely to be un-
derrepresented, so this experiment can generally evaluate the learning
performance on the underrepresented data. We can see from Fig. 9 that
our worse-case boosting algorithm works consistently better than all the
compared methods at both quantiles and on both datasets during the
whole training process, while the BL works worst in almost all scenar-
ios. This finding suggests that our algorithm learns underrepresented
data more efficiently, which verifies the effectiveness of our algorithm,
being able to learn from under-representative datasets in cervical cell
classification. We can also see that our algorithm can continually
decrease the classification errors during training, though there are yet
some slight increases at some times. This evidence indicates that our
algorithm can boost the learning performance on the underrepresented
data in almost all training iterations as long as the learning has not been
saturated, showing the stable capability of our algorithm in making
effective learning of the classifier from under-representative training
data in cervical cell classification.

Improvement with various under-representative levels. We here
demonstrate that our algorithm learns better from various under-
representative levels of training datasets than the compared SOTAs:
DR (Wang et al., 2020), DS (Kong et al., 2022), DW (Fang et al., 2020),
CG (Zhang et al., 2021), HEM (Zhu et al., 2021), and IS (Aljuhani
et al., 2022). To do so, from the randomly split data by the above-
mentioned 5-fold cross-validation, we randomly choose 20% ∼ 80%
of the training data for each category to simulate the varying of the
under-representative levels; while the test data uses the same setting.
We run 10 times for each method, at each of which the random seed
is different, which can avoid choosing the same data. We use 4-fold
vs. 1-fold for training and testing; DR and DS are 3-fold vs. 1-fold vs.
1-fold. We report the classification accuracy results (the worst, best and
mean over the 10 tries) in Table 5, denoted by the worst, best and mean,
respectively.

We can see from Table 5 that our worse-case boosting algorithm
produced a more accurate result, for all the worst, best and mean per-
spectives, than the compared SOTAs: DR (Wang et al., 2020), DS (Kong
et al., 2022), DW (Fang et al., 2020), CG (Zhang et al., 2021), HEM (Zhu
et al., 2021), and IS (Aljuhani et al., 2022), on both datasets. This
experimental finding suggests that our algorithm has a great potential
to learn better from different under-representative levels of training
datasets, which effectively demonstrates its capability in alleviating the
difficulty of collecting a representative training dataset for cervical cell
classification. We can also see that the worst results of our algorithm are
9

nearly comparable with the mean result of the compared methods. This
Table 6
Performance (average classification accuracy on 10 tries, %) improvement results on
long-tail distributions under 3 imbalance ratios of 2, 5 and 20 over the SOTAs: DR
(Wang et al., 2020), DS (Kong et al., 2022), DW (Fang et al., 2020), CG (Zhang et al.,
2021), HEM (Zhu et al., 2021), and IS (Aljuhani et al., 2022), while BL denotes the
baseline; we highlight the best results with bold and color the second best results with
blue.

Dataset SIPaKMeD Dataset LCPSI Dataset

Ratio 2 5 20 2 5 20

BL 85.1 80.3 69.2 79.6 74.2 65.7
DR 86.4 82.7 72.8 80.1 75.3 66.9
DS 85.7 81.8 73.2 80.7 75.8 67.1
DW 87.5 82.9 72.4 81.4 76.2 66.3
CG 86.3 83.1 71.9 80.9 77.1 68.9
HEM 87.1 83.0 73.1 79.4 74.5 68.2
IS 86.4 82.8 72.1 79.9 76.2 67.8
Ours 90.7 88.9 81.2 84.9 82.1 76.3

finding effectively reflects that our algorithm is more robust to boost
the learning performance in various under-representative scenarios.

Performance improvement on long-tail distributions. We finally
demonstrate that our algorithm yet works better on long-tail distri-
bution scenarios than the compared SOTAs: DR (Wang et al., 2020),
DS (Kong et al., 2022), DW (Fang et al., 2020), CG (Zhang et al.,
2021), HEM (Zhu et al., 2021), and IS (Aljuhani et al., 2022). To do
so, we reduce the training number of the cells of each category per
an exponential function 𝑘 = 𝑘𝑐𝜇𝑐 as suggested by Yu et al. (2022),
where 𝑐 denotes the category index, 𝑘𝑐 stands for the original number
of category 𝑐 and 𝜇 ∈ (0, 1); the imbalance ratio then equals 𝑘𝑚𝑎𝑥∕𝑘𝑚𝑖𝑛.
We randomly choose the data under three different imbalance ratios
of 2, 5 and 20 with 10 tries for each ratio. The results, the average
classification accuracy on the 10 tries, are reported in Table 6. We can
see that our method works consistently better than all the compared
SOTAs in all scenarios and that the performance gain increases with the
increasing of the imbalance ratio, confirming the effectiveness of our
method on long-tail distribution scenarios that also make the training
dataset under-representative to the unseen test data.

4.3. Analysis results

Ablation study. The proposed worse-case boosting algorithm has three
main components: (1) worse-case data sampling, (2) loss boosting, and
(3) using gradient norm to sample worse-case data. We here evaluate
their contributions to the performance improvement by comparing the
proposed algorithm to three of its variants, denoted by WS-, LB-, and
S-L, that removes the worse-case data sampling step, removes the loss
boosting step, and replaces the gradient norm as the loss value to sam-
ple worse-case data, respectively. We conduct the experiment by using
the same 5-fold cross-validation to produce the results; specifically, we
randomly choose 4-fold for training and the remaining 1-fold for testing
with 5 tries. The results, the mean and standard deviation of the classifi-
cation accuracy, are presented in Table 7. We can see that WS-, LB- and
S-L work better than BL (the baseline) but both worse than Ours on both
datasets, and that LB- works most similar to Ours. This experimental
finding suggests that all three components are necessary and mutually
reinforced in the performance improvement of the proposed algorithm,
and that the loss boosting component contributes less than the other
two components to the performance boosting.

Sampling vs. selecting. Worse-case data can yet be selected by choos-
ing those training data that are with a larger gradient norm. We here
empirically demonstrate why our sampling procedure is better than the
selecting scheme by comparing our algorithm to the variant denoted by
WcS, the abbreviation of worse-case selecting, that replaces the worse-
case sampling by worse-case selecting. We conduct the experiment by
using 4-fold vs. 1-fold for training and testing. WcS selects the same
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Table 7
Classification results (accuracy, %) in ablation studies and in different values of the
hyper-parameters: sampling size, approximation size and weight cutoff.

SIPaKMeD LCPSI

Ablation Studies

BL 88.3 ± 1.2 81.4 ± 1.8
WS- 89.9 ± 1.1 82.5 ± 1.9
LB- 91.1 ± 1.0 83.9 ± 1.9
S-L 90.3 ± 1.1 83.2 ± 1.8
WcS 86.7 ± 1.1 81.2 ± 2.0
Ours 91.5 ± 0.9 85.7 ± 1.5

Sampling Size

1× 90.8 ± 1.1 83.9 ± 2.0
5× 91.3 ± 1.0 84.6 ± 1.7
10× 91.5 ± 0.9 85.7 ± 1.5
15× 91.2 ± 1.1 85.5 ± 1.6
20× 91.0 ± 1.1 84.8 ± 1.7

Approximation Size

1× 90.2 ± 1.1 84.1 ± 1.8
3× 91.1 ± 1.0 85.4 ± 1.7
5× 91.5 ± 0.9 85.7 ± 1.5
10× 91.4 ± 1.0 85.3 ± 1.6
20× 91.7 ± 0.9 86.0 ± 1.5
Real 91.9 ± 0.9 86.1 ± 1.4

Weight Cutoff

[0.5, 1.5] 88.9 ± 1.1 82.5 ± 1.9
[0.7, 1.3] 91.0 ± 1.0 85.2 ± 1.6
[0.8, 1.2] 91.5 ± 0.9 85.7 ± 1.5
[0.9, 1.1] 91.3 ± 1.1 84.8 ± 1.7
[1.0, 1.0] 91.1 ± 1.0 83.9 ± 1.9

number of the worse-case data as ours (320, see Section 4.1). The
results are reported in Table 7, from which we can see that WcS works
worse than both BL and Ours on both two datasets. This experimental
evidence indicates that assigning a large probability to learn from
worse-case training data is far better than the way of selecting them,
as by doing so data with a large gradient norm can be sampled more
times and then receive more iterations to be learned by the network,
not just once.

Sampling size. We determine the sampling size of the worse-case data
by grid searching from 5 potential values in a validation dataset: 1×,
5×, 10×, 15× and 20× of the batch size. The results, the classification
accuracy, are presented in Table 7, produced by using the same 5-fold
cross-validation. We can see from Table 7 that on both datasets the best
result is produced when the sampling size is equal to 10×, and that the
result of this size is significantly better than that of other searched 4
sizes. We therefore set the sampling size to 10× of the batch size as
default.

Approximation size. A large size of the data sampled in the gradient
approximation step provides more information to the regression model,
and thus enhances the approximation accuracy. A large size, on the
other hand, consumes more computational cost. For a balance, we
determine the size for gradient norm approximation by grid searching
from 5 potential values in a validation dataset: 1×, 3×, 5×, 10× and
20× of the batch size. The results are shown in Table 7, produced by
using the same 5-fold cross-validation. We can see from Table 7 that
on both datasets the performance improves just slightly when the size
is greater than 5×. We therefore set the approximation size to 5× as
default.

Approximation accuracy. We here evaluate the approximation accu-
racy of the gradient norm by comparing our algorithm to the variant,
denoted by Real, that uses the real gradient norm. We conduct the
experiment by using the same 5-fold cross-validation to produce the
results. The results are presented in Table 7, from which we can see
that the classification accuracy of our algorithm is close to that of Real;
(91.5 ± 0.9 vs. 91.9 ± 0.9 on the SIPaKMeD dataset and 85.7 ± 1.5 vs.
86.1 ± 1.4 on the LCPSID dataset). Considering that evaluating the real
gradient norm consumes a far more expensive computational cost than
10
Fig. 10. The iteration number (red) and the summation of the boosting weight (green)
of the training data for verifying the learning validity of our algorithm, with (a) on
the SIPaKMeD dataset and (b) on the LCPSI dataset; data are sorted by the loss value
(ascent) of the BL.

our approximation, it may be safe to conclude that our approximation
is accurate enough in terms of classification accuracy.

Boosting weight cutoff. In the loss boosting step, we clamp the
boosting weight to avoid that the network update is dominated by
some worse-case data that have an extremely large gradient norm. We
determine the cutoff range by grid searching from 5 potential ranges
in a validation dataset: [0.5, 1.5], [0.7, 1.3], [0.8, 1.2], [0.9, 1.1] and
[1.0, 1.0] (no loss boosting). The results are presented in Table 7,
produced by using the same 5-fold cross-validation. We can see from
Table 7 that on both datasets the best results are produced when the
range is set to [0.8, 1.2]. We therefore clamp the boosting weight within
[0.8, 1.2] as default.

Learning validity. We finally evaluate the validity of our algorithm
through the lens of the iteration number and the summation of the loss
boosting weights of the training data. Our algorithm aims at boosting
the worse-case data that are more likely to be underrepresented, so
more iterations and a larger boosting weight should be assigned to
them. We conduct the experiment by randomly choosing 4-fold out
of 5-fold for training to produce the results. We count the iteration
number and summarize the boosting weights for each training data. The
results are presented in Fig. 10; data are sorted according to the loss
value (ascent) of the BL. We can see from Fig. 10 that more iterations
and larger boosting weights are generally assigned to the training data
that are classified relatively worse, which effectively demonstrates the
validity of the proposed algorithm.

5. Discussion

It is rather difficult to collect a representative enough training
dataset in cervical cell classification, which makes the classifier, though
trained properly, often classify wrongly for underrepresented unseen
data. We therefore propose a new algorithm, termed worse-case boost-
ing, for boosting the learning quality with under-representative training
datasets. This effective algorithm, as demonstrated before, works well
in different learning settings and works better than the existing meth-
ods. We below discuss the limitation, applicability, and future work of
this new algorithm for further development and investigation.

Limitation. The main limitation of this work comes mainly from the
computational cost consumption in learning Compared to the standard
learning, our algorithm consumes a bit more computational cost to
evaluate the gradient norm for the worse-case data sampling and loss
boosting. However, compared to existing methods for learning from
under-representative datasets, our algorithm is more computationally
efficient. We provide the computational cost consumption results of
our algorithm against the standard learning (denoted by BL) and the
compared SOTAs: DR (Wang et al., 2020), DS (Kong et al., 2022),
DW (Fang et al., 2020), and CG (Zhang et al., 2021), in Table 8, where
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Table 8
Comparison results of the computational cost (memory footprint
and running time) of our worse-case boosting algorithm over the
SOTAs: DR, DS, DW, and CG, while BL denotes the baseline.

Memory Time

BL 1.0 1.0
DR (Wang et al., 2020) 2.0 ≈2.6
DS (Kong et al., 2022) 3.0 ≤3.0
DW (Fang et al., 2020) 2.0 ≥2.0
CG (Zhang et al., 2021) ≥3.0 ≥10.0
Ours 1.5 ≈1.3

Table 9
Applicability results on cervical cell detection and segmentation
tasks in the SIPaKMeD dataset of our worse-case boosting algorithm
over the SOTAs: DR, DS, and DW, while BL denotes the baseline;
we highlight the best results with bold and color the second best
results with blue.

Detection Segmentation
mAP(%) ↑ DSC(%) ↑

BL 84.27 ± 2.64 76.81 ± 7.27
DR (Wang et al., 2020) 85.01 ± 2.71 78.32 ± 7.04
DS (Kong et al., 2022) 85.73 ± 2.10 79.48 ± 6.62
DW (Fang et al., 2020) 85.44 ± 2.23 80.48 ± 5.86
Ours 88.03 ± 1.96 83.62 ± 4.17

we take the cost of the BL as one unit for the comparison. The results
are produced on Intel(R) Xeon(R) E5 CPU (2.10 GHz), 32 GB memory
and two NVIDIA GTX 1080Ti GPU cards (11 GB memory of each). Note
that in the testing phase, all the methods consume the same cost, both
the memory footprint and running time, as the BL, except for CG which
needs the extra cost for the generalization network.

Applicability. Collecting a training dataset representative enough to
the unseen test data is the main problem in cervical cell classification,
which is also why we disclose this method in this task. This prob-
lem, however, also can be frequently encountered in a wide range of
other applications, such as object detection (Bai et al., 2021), image
segmentation (Chen et al., 2022b), and the classification for other
objects (Mookiah et al., 2021). The proposed worse-case boosting algo-
rithm therefore has great potential to be applied to these applications.
The first reason is that the idea is general; our goal is to boost the
generalizability of the prediction model on underrepresented data by
learning more from worse-case data that are more likely to be un-
derrepresented. Furthermore, the implementation is feasible for other
applications. Our algorithm relies on the gradient norm information
for the worse-case data sampling and loss boosting, which can be
computed in any deep learning paradigm as long as the loss function is
differentiable. Table 9 provides a preliminary result of the performance
improvement of our algorithm over the standard learning (denoted by
BL), DR (Wang et al., 2020), DS (Kong et al., 2022), and DW (Fang
et al., 2020), in the SIPaKMeD dataset, for cervical cell detection and
egmentation tasks. The result is produced by Faster-RCNN (Ren et al.,
015) for cell detection and UNet (Ronneberger et al., 2015) for cell
egmentation, using the same learning setting as them. Table 9 shows
hat our worse-case boosting achieves a significant performance gain
ver the compared methods, effectively demonstrating its applicability.

uture work. Three works are planned to be investigated: (1) cervi-
cal cell detection, (2) multi-center cervical cell classification, and (3)
development to other applications. We shall develop a cervical cell
detection algorithm and integrate it with the proposed algorithm. Since
the difficulty of collecting a representative enough training dataset
still exists in the cervical cell detection task, we shall focus mainly on
extending the proposed algorithm to this task. We shall also develop
the proposed algorithm for the multi-center cervical cell classification
scenarios. For the intelligent screening, it is important to consider
11

factors that affect the imaging quality, e.g., the staining manner, the
material of the microscope slides, the microscope camera, etc., which
can be various in different clinical centers, which further increases the
variations of cervical cells. Finally, we shall develop this algorithm
for other applications, e.g., object detection, image segmentation, and
he classification of other objects. The preliminary result (see Table 9)
hows that this is possible.

. Conclusion

We have presented our worse-case boosting that is an effective
earning algorithm for classifiers to learn from under-representative
atasets in cervical cell classification. This algorithm attempts to boost
he classifier’s generalizability on underrepresented data by learning
ore from worse-case data that are classified worse and more likely

o be underrepresented, via the way of dynamically assigning them
ore training iterations and larger loss weights. This new algorithm
aintains the similar optimization complexity, allows the classifier to

earn from all data, and does not require a significant similarity of test
ata’s distribution to that of training data. The extensive experimental
esults on two publicly available datasets confirm that this algorithm
orks well in various scenarios and works better than existing methods.
verall, we find that this algorithm can effectively help classifiers to

earn from under-representative datasets for cervical cell classification.
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