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A B S T R A C T

In pathology, cancer grading is crucial for patient management and treatment. Recent deep learning methods,
based upon convolutional neural networks (CNNs), have shown great potential for automated and accurate
cancer diagnosis. However, these do not explicitly utilize tissue/cellular composition, and thus difficult to
incorporate the existing knowledge of cancer pathology. In this study, we propose a multi-cell type and
multi-level graph aggregation network (MMGA-Net) for cancer grading. Given a pathology image, MMGA-Net
constructs multiple cell graphs at multiple levels to represent intra- and inter-cell type relationships and to
incorporate global and local cell-to-cell interactions. In addition, it extracts tissue contextual information using
a CNN. Then, the tissue and cellular information are fused to predict a cancer grade. The experimental results
on two types of cancer datasets demonstrate the effectiveness of MMGA-Net, outperforming other competing
models. The results also suggest that the information fusion of multiple cell types and multiple levels via
graphs is critical for improved pathology image analysis.
1. Introduction

Cancer is the leading cause of death worldwide and accounted for
10 million deaths in 2020 (Sung et al., 2021). Early diagnosis and
detection of cancer can improve survival rates and reduce death rates.
However, traditional cancer pathology, which requires a manual exami-
nation of biopsied or resected tissue samples upon staining, suffers from
low-throughput and large inter- and intra-observer variations (Elmore
et al., 2015; Mahmood et al., 2020). The consistent increase in the
incidence of cancer may contribute to the increase in diagnostic errors
and a decrease in the quality of pathology services in clinics. Therefore,
alternative methods that can improve the accuracy, throughput, and
reliability of cancer pathology are needed.

In recent years, computational pathology has shown to be effective
in processing and analyzing digitized pathology images (Niazi et al.,
2019), holding great potential for facilitating improved cancer pathol-
ogy today. Recent advances in computational pathology are largely at-
tributable to the availability of large pathology image datasets (Bulten
et al., 2022; Gamper et al., 2019) and deep learning, in particular con-
volutional neural networks (Vit). Nuclear feature extraction has been
successfully applied to several pathology tasks such as nuclei segmenta-
tion (Doan et al., 2022; Kumar et al., 2017), tissue segmentation (Mehta
et al., 2018a; Mercan et al., 2019), nuclei classification (Doan et al.,
2022; Graham et al., 2019), and tumor detection (Bejnordi et al.,
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2017; Pati et al., 2021) and staging (Le Vuong et al., 2021; Mercan
et al., 2019). Although CNNs have shown their ability to process and
analyze pathology images, there exist several critical issues inherent to
the nature of CNNs and pathology images. First, CNNs mostly operate
on per image basis. Each image has a pre-determined, fixed size and
fixed field-of-view, and thus the analysis of CNNs is, by and large,
confined to the size and resolution of the image. Second, pathology
images are enormous; for instance, a single whole-slide image (WSI),
in general, possesses an order of gigapixels, which overwhelms the
capacity of CNNs. For this reason, WSIs are often represented as a bag
of smaller images (or patches), and the information from numerous
images is aggregated to conduct WSI-level tasks. Third, the aggregation
of information from numerous images is non-trivial. A majority voting
scheme (Roy et al., 2019), multiple instance learning (Sudharshan
et al., 2019), and recurrent neural networks (RNNs) (Yan et al., 2020)
are often utilized, but these may ignore the original spatial location and
relationship among images. Last, pathology assessment is performed
based on various histological objects, including glands, cells, nuclei,
etc., but the operation of CNNs mostly focuses on neighboring pix-
els, not such objects. This makes it hard to incorporate the existing
knowledge of cancer pathology, leading to poor interpretability and
explainability of CNNs and their decisions on pathology images.
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In computational pathology, there exists another line of research
based on graph theory that could resolve the shortcomings of the
current CNN approaches. A pathology image can be described as a set
of histological objects such as cells. Using the histological objects, we
can form a graph in which nodes and edges characterize individual
histological objects and the interaction/relationship among them, re-
spectively. In this manner, we can exploit both cellular morphology and
cell-to-cell interactions for tissue microenvironment and disease status,
which is beneficial for pathology image analysis for several reasons.
For example, it becomes easier to incorporate the existing pathology
knowledge of cells and tissues as well as requires less computational
cost, i.e., scalable to WSIs. It also enables the integration of the relation-
ship among proximal/distant histological objects into a computational
pathology system. Earlier works extracted and exploited graph-based
hand-crafted features that are computed using the degree of a node,
the number and ratio of nodes and edges, the length and weight of
edges, and the shortest and longest path in a graph (Doyle et al.,
2012; Nguyen et al., 2014). Recently, graph neural networks (GNNs)
has been applied to several pathology image tasks, including cancer
grading (Zhou et al., 2019) and tissue sub-typing (Jaume et al., 2021;
Pati et al., 2022). In GNN-based methods, some construct graphs using
tissue components (e.g., epithelium, stroma, lumen, etc.) (Anklin et al.,
2021; Pati et al., 2022), but cell graphs are most widely used (Jaume
et al., 2021; Pati et al., 2022). Although there exist several cell types
(or tissue components) in a pathology image, none of the prior GNN-
based methods sought to analyze them separately, largely ignoring the
interaction among the cells of an individual type. Moreover, most of
the GNN-based methods construct and utilize a single graph. Due to
the abundance of cells, the interaction that is exploited and learned
via graph learning tends to be limited to a local structure (Jaume
et al., 2021). A hierarchical graph representation, so-called HACT, that
utilizes both a tissue graph and a cell graph has been proposed for a
comprehensive understanding of tissue structures (Pati et al., 2022).
However, HACT may not properly reflect the overall tissue structure
since it builds a tissue graph based on fragmented tissue segments;
for instance, a single glandular structure is split into irregular tissue
segments of varying sizes and shapes. Hence, a GNN method that can
make use of both global and local tissue structures efficiently and
effectively is needed to facilitate an improved graph representation of
tissues. Herein, we propose a Multi-cell type and Multi-level Graph
Aggregation Netetwork (MMGA-Net) for cancer grading in pathology
images (Fig. 1). Given a pathology image, we construct multiple cell
graphs by utilizing an advanced nuclei segmentation and classification
algorithm: one graph for the entire cell types and a separate graph per
cell type. Multi-cell type graphs are biologically inspired since each cell
type has its own biological, histological, and functional characteristics.
These cell graphs are also constructed at multiple levels to represent
global and local cellular interactions and to mimic the pathology review
process where tissue samples are examined under different magnifica-
tions from glandular formation and distribution to cell morphology. To
represent the global cellular interaction, cell graphs are constructed for
an entire pathology image. As for the local cellular interaction, cell
graphs are constructed for small local regions, generating a multitude
of local cell graphs. We aggregate these local graphs in a way that
only important nodes and local regions are preserved irrespective of the
order of nodes and local regions. In addition, we utilize a CNN to incor-
porate tissue-level information. MMGA-Net is composed of three major
components. The first component learns the relationship among cells
via GNNs. The second component extracts tissue contextual information
using a CNN. The third component fuses tissue contextual information
with cellular information from multi-level and multi-cell type graphs
to conduct cancer grading. We evaluate MMGA-Net on two types of
cancer datasets, including colorectal cancer and gastric cancer. The
experimental results demonstrate that MMGA-Net outperforms other
existing CNN- and GNN-based methods.
2

In summary, the major contributions of this paper are as follows:
• Multi-cell type and multi-level graphs: We introduce multi-cell
type and multi-level graphs, which are inspired by tissue biology
and pathology review process, for pathology image analysis. This
allows us to study the global and local cellular interactions among
the entire cells and cells of a specific type. To the best of our
knowledge, this is the first GNN-based attempt to construct and
utilize multi-cell type graphs in pathology image analysis.

• Tissue and cellular information aggregation mechanism: We
introduce an efficient and effective three-stage aggregation mech-
anism for multi-cell type and multi-level graphs. In the first stage,
we aggregate a set of local graphs via attention mechanism. In the
second stage, we use deep sets (Zaheer et al., 2017) to discover
feature representations that are invariant to the order of the cells
in the global and local graphs. In the third stage, we exploit an
entropy weighting scheme to aggregate multiple levels of tissue
and cellular information and to make an aggregated prediction on
a pathology image.

• Evaluation on multi-organ data: We systematically evaluate the
proposed methodology for cancer grading on data from multiple
organs such as colorectal and gastric cancer. To the best of our
knowledge, this is the first attempt to apply a GNN-based method
for gastric cancer grading. For both cancer types, the proposed
method outperforms several CNN- and GNN-based methods.

2. Related work

2.1. Cancer classification in computational pathology

In computational pathology, there has been substantial effort to de-
velop automated and robust tools for cancer classification. Nowadays,
CNN-based methods are predominant and outperform other approaches
built based upon hand-crafted features (LeCun et al., 2015; Van der
Laak et al., 2021). Many CNN-based methods adopt a single-path
or -stream architecture to conduct cancer classification in pathology
images, including breast cancer (Araújo et al., 2017), prostate can-
cer (Arvaniti et al., 2018), and lung cancer (Coudray et al., 2018).
To further improve the performance of cancer classification, more
advanced CNN approaches have been proposed. For instance, Le Trinh
et al. (2021) develops an end-to-end multi-scale CNN approach where
multi-scale features are encoded as a binary code to discover multi-
scale patterns and are used to conduct cancer grading in colorectal and
prostate tissues. Bejnordi et al. (2017) utilizes a stacked CNN structure
to incorporate large contextual information from tissues to conduct the
classification of breast carcinomas.

Tellez et al. (2019) adopts neural image compression to compress
a pathology image via unsupervised learning and employs a CNN to
identify tumor metastasis in the breast and to classify 9 tissue types
in the rectum. Multi-task learning that simultaneously learns multiple
related tasks is another popular approach. For example, Mehta et al.
(2018b) jointly conducts breast tissue segmentation and classification
by using a modified U-Net. Le Vuong et al. (2021) formulates cancer
grading as both categorical and ordinal classification problems and
simultaneously conducts both classification tasks for cancer grading in
prostate and colorectal tissues. Other approaches include the integra-
tion of multiple instance learning into Vit (Sudharshan et al., 2019)
and the combination of Vit and RNNs (Yan et al., 2020) for cancer
classification in pathology image analysis.

2.2. Graph representation and deep learning in computational pathology

Graph representation of a pathology image permits a histological
object-based analysis that gives distinct advantages over pixel-based
analysis utilized by Vit (Pati et al., 2022). It has shown to be promising
in several applications in computational pathology, including cancer
classification (Anand et al., 2020; Pati et al., 2022; Zhou et al., 2019),

survival prediction (Chen et al., 2020), and tissue segmentation (Anklin
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Fig. 1. Overview of MMGA-Net.
et al., 2021). Graphs are often constructed by using cells (or nuclei)
where each cell is characterized by hand-crafted or deep learning-based
features and edges are established based on the Euclidean distance
between cells. For example, Anand et al. (2020) detects nuclei, extracts
nuclei features using both hand-crafted features (color, gray level co-
occurrence matrix, and the number of neighboring nuclei) and deep
learning-based features, forms edges by thresholding the Euclidean
distance among cells, and utilizes graph convolutions to conduct breast
cancer classification. Similarly, Zhou et al. (2019) constructs a cell
graph and uses a GNN for colorectal cancer classification. In a cell
graph, each cell is characterized by 17 nuclear descriptors that are
known to be discriminative for nuclei classification. Edges are formed
by using the k-nearest neighbor (kNN) algorithm and the Euclidean
distance among nuclei. In the GNN, intermediate outputs are concate-
nated, forming multi-level feature representations, and used for cancer
classification. Chen et al. (2020) also utilizes a cell graph and a GNN
for survival outcome prediction. To further improve the prediction
performance, the output of GNN is combined with deep learning-based
features from a pathology image and genomic features from molecular
profiles. Moreover, for an improved tissue representation, Pati et al.
(2022) proposes a hierarchical cell-to-tissue (HACT) graph representa-
tion for breast cancer classification that exploits both cells and tissue
components. Cell and tissue graphs are separately constructed and com-
bined via an assignment module that assigns cells to the corresponding
tissue components by using their spatial location. In addition, Javed
et al. (2020) employs both cell-level and patch-level graphs to detect
cellular communities, which could lead to the discovery of distinct
tissue phenotypes in colorectal cancer.

3. Methodology

3.1. Problem formulation

Suppose that we are given a pathology image 𝐼 ∈ N3 with 𝑁𝑐
cells of differing types. Let  be a set of 𝑁𝑚 multi-level cell graphs
{

𝐺(𝑚) ∣ 𝑚 = 1,… , 𝑁𝑚
}

where 𝐺(𝑚) =
(

𝑉 (𝑚), 𝐸(𝑚)) is the 𝑚th level cell
graph with𝑁 (𝑚)

𝑐 ≤ 𝑁𝑐 cells, 𝑉 (𝑚) denotes a set of nodes
{

𝑣(𝑚)𝑖 ∣ 𝑖 = 1,… ,

𝑁 (𝑚)
𝑐

}

, and 𝐸(𝑚) represents a set of edges
{

𝑒(𝑚)𝑣𝑖 ,𝑣𝑗 ∣ 𝑣
(𝑚)
𝑖 , 𝑣(𝑚)𝑗 ∈ 𝑉 (𝑚) and

𝑣(𝑚)𝑖 ≠ 𝑣(𝑚)𝑗

}

, respectively. Each node 𝑣(𝑚)𝑖 ∈ 𝑉 (𝑚) represents a cell
in 𝐼 that is quantified by a d-dimensional feature vector 𝑏𝑣𝑖∈R

𝑑 . An
adjacency matrix 𝐴(𝑚)∈R𝑛×𝑛 of the graph 𝐺(𝑚) shows the association
between nodes, i.e., cells. It simply tells whether there exists an edge
3

between any pair of nodes. If 𝐴(𝑚)
𝑖,𝑗 > 0, 𝑒(𝑚)𝑣𝑖 ,𝑣𝑗 ∈ 𝐸(𝑚). Otherwise, 𝑒(𝑚)𝑣𝑖 ,𝑣𝑗 ∉

𝐸(𝑚).
The objective of this study is to learn a mapping function 𝑓 ∶

N3 ⟶ N1 such that ∀𝐼 ∈ N3, 𝑓 (𝐼) = 𝑦 ∈ {0, 1,… , 𝐶 − 1} where C
is the cardinality of class labels. The function 𝑓 consists of three kinds
of sub-functions, including 𝑓𝐺, 𝑓𝑇 , and 𝑓𝐶 . 𝑓𝐺 is a set of functions
{

𝑓𝐺(𝑚) ∣ 𝑚 = 1,… , 𝑁𝑚

}

, of which each 𝑓𝐺(𝑚) is built based upon a GNN
and maps the 𝑚th level graph 𝐺(𝑚) to an embedding vector 𝑏𝐺(𝑚) ∈
R1×𝑚𝐺(𝑚) using cellular interactions among

{

𝑣(𝑚)𝑖 ∣ 𝑖 = 1,… , 𝑁 (𝑚)
𝑐

}

. 𝑓𝑇

and 𝑓𝐶 are built based on convolutional neural networks. 𝐹 𝑇 receives
𝐼 and extracts another embedding vector 𝑏𝑇 ∈ R1×𝑚𝑇 that provides
tissue-level information. 𝐹𝐶 takes feature vectors from 𝑓𝐺 and 𝑓𝑇

and utilizes them to make a prediction. Hence, the objective can
be formulated as minimizing a loss function  (𝑓 (𝐼 ; 𝜃)) where 𝜃 =
{

𝜃𝐺(1) , 𝜃𝐺(2) ,… , 𝜃𝐺(𝑚) , 𝜃𝐶 , 𝜃𝑆
}

denotes trainable parameters.

3.2. Cell graph construction

Given the pathology image 𝐼 , we construct a cell graph 𝐺 by (1)
identifying cells using an advanced nuclear instance segmentation and
classification algorithm, (2) extracting nuclear features from each cell,
(3) sampling a subset of cells to reduce redundancy, and improve the
efficiency of the cell graph, and (4) computing edge weights in the
graph. The overall diagram for the cell graph construction is shown
in Fig. 2.

3.2.1. Nuclei segmentation and classification
We adopt SONNET (Doan et al., 2022) to identify cells of different

types in the pathology image 𝐼 . SONNET contains a single encoder
and three decoders. The encoder extracts the high-dimensional feature
representation. The three decoders generate a nuclear foreground map,
a nuclear type map, and a nuclear ordinal regression map. During
training, the nuclear ordinal regression map is used to identify the most
challenging regions, i.e., pixels near nuclear boundaries, and to direct
the network to focus on these pixels for improved nuclear segmentation
and classification. SONNET is trained on GLySAC dataset (Doan et al.,
2022) with three types of nuclei, including epithelial, lymphocyte,
and miscellaneous. Thus, SONNET identifies individual cells in the
pathology image 𝐼 and classifies them into three types.
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Fig. 2. Overview of multi-cell type and multi-level graph construction.
3.2.2. Nuclear feature extraction
For each of the identified cells (or nuclei), denoted by 𝑣𝑖, we

extract a feature vector 𝑏𝑣𝑖 ∈ R𝑑 that describes its shape, texture,
and appearance (𝑑 = 50). Specifically, we obtain 1280 features from
the last convolutional layer of SONNET’s encoder using the ROI Align
technique (He et al., 2017). We also incorporate 17 cellular/nuclear
descriptors, including 5 intensity-based features (mean and standard
deviation of nuclei intensity, skewness of nuclei intensity, mean en-
tropy of nuclei intensity, and the average difference in the intensity of
foreground and background pixels), 4 texture-based features (dissim-
ilarity, homogeneity, energy, and angular second moment of GLCM),
and 8 shape-based features (eccentricity, area, maximum and minimum
length of axis, perimeter, solidity, orientation, and centroid coordi-
nates). Provided with the 1297 features, we utilize random forest to
choose 50 features, i.e., 𝑑 = 50, that are most predictive for cancer
types. Utilizing all nuclei in each image of the training set of the
colorectal dataset, we train random forest for cancer classification and
compute the importance of each feature. Sorting all the features by
their importance, we select the top-50 features for further investigation.
The 50 selected features include 7 cellular/nuclear descriptors and 33
CNN-driven features. The list of the selected features is available in
Supplementary Table 1 and 2.

3.2.3. Graph node sampling
Following Zhou et al. (2019), we utilize a subset of cells to construct

a graph, which could reduce the redundancy among cells with similar
characteristics and computational complexity. Two sampling strategies
are employed. One is random sampling where cells within a pathology
image are randomly selected with a probability of 0.2. The other is far-
thest point sampling in which 40% of the cells are selected iteratively.
Given an initial set of the selected cells, each time a new cell is added
to the selected set if it has the farthest distance from all the cells in the
set. The union of the two selected sets of cells serves as nodes of a cell
graph 𝐺. However, the selection is likely to be sensitive to the starting
set. So, the first approach provides extra cells at random. By using these
two strategies, we aim to select >50% of the cells in an image that is
dispersed and diverse enough.
4

3.2.4. Graph edge construction
Upon completion of graph node sampling, we define an edge 𝑒𝑣𝑖 ,𝑣𝑗

for a pair of neighboring cells or nodes (𝑣𝑖, 𝑣𝑗 ) to represent cell-to-cell
interactions. To encourage the interaction among neighboring cells, we
limit the maximum degree of a node to 8 and the maximum Euclidean
distance between any pair of nodes to 100. These can be summarized
as an adjacency matrix 𝐴 as follows: 𝐴𝑣𝑖 ,𝑣𝑗 = 1 if 𝑣𝑗 ∈ 𝑘𝑁𝑁(𝑣𝑖) and
𝐷(𝑣𝑖, 𝑣𝑗 ) < 100 and, otherwise, 𝐴𝑣𝑖 ,𝑣𝑗 = 0 where 𝐷 denotes the Euclidean
distance.

3.2.5. Multi-cell type and multi-level graph construction
For each pathology image 𝐼 , we construct three cell graphs 𝐺(1),

𝐺(2), and 𝐺(3) where 𝐺(1) is a global graph and 𝐺(2) and 𝐺(3) are local
graphs (Fig. 2). The global graph 𝐺(1) is constructed for the entire
pathology image 𝐼 . It includes three kinds of graphs, a graph for
epithelial cells, a graph for lymphocytes, and a graph for both epithelial
cells and lymphocytes. The first and second graphs are for epithelial
cells and lymphocytes, respectively, which are used to examine the
cellular interactions of each cell type, and the third graph is for cellular
interactions among all the cells, including both epithelial cells and
lymphocytes, in the image 𝐼 . To construct the two local graphs 𝐺(2)

and 𝐺(3), we slide a rectangular window of size 𝑑 × 𝑑 pixels where
d is set to 512 and 256 by heuristics, respectively, throughout the
pathology image 𝐼 with a stride of 256. For each local region of size
𝑑 × 𝑑 pixels, we construct three cell graphs: one for epithelial cells,
one for lymphocytes, and one for both epithelial cells and lymphocytes,
similar to the construction of the global graph 𝐺(1). Therefore, both 𝐺(2)

and 𝐺(3) contain multitude of three types of cell graphs.

3.3. Network architecture

The overall architecture of MMGA-Net is described in Fig. 1. MMGA-
Net includes three components that are corresponding to 𝑓𝐺, 𝑓𝑇 , and
𝑓𝐶 . The first component

(

𝑓𝐺
)

includes three branches (𝑓𝐺(1) , 𝑓𝐺(2)

and 𝑓𝐺(3) ) that are built based upon a GNN to utilize and learn cell-
to-cell interactions in the pathology image 𝐼 (Hence, 𝑁𝑚= 3). The
first branch (𝑓𝐺(1) ) utilizes a global cell graph to obtain the overall
cellular interactions. The second and third branches (𝑓𝐺(2) and 𝑓𝐺(3) )
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exploit local cell graphs to learn regional cellular interactions. The
next component

(

𝑓𝑇
)

employs a CNN to extract the overall tissue-
evel information in the pathology image 𝐼 . The last component

(

𝑓𝐶
)

combines and processes the outputs of 𝑓𝐺 and 𝑓𝑇 to provide a class
abel for the pathology image 𝐼 . Hence, we analyze various aspects of
pathology image at multiple levels from tissue to cell characteristics,

rom global to local cell-to-cell interactions, and from whole-cell to
ell-type specific interactions.

For 𝑓𝐺(1) , 𝑓𝐺(2) , and 𝑓𝐺(3) , the pathology image 𝐼 is converted into
graphs 𝐺(1), 𝐺(2), and 𝐺(3), respectively. 𝑓𝐺(1) is composed of a series of
three graph convolution modules (𝜓1, 𝜓2, and 𝜓3) and a deep set mod-
ule 𝜙 where 𝜓𝑙 contains a node embedding layer, a node assignment
layer, and a node pooling layer. For 𝑓𝐺(2) and 𝑓𝐺(3) , we adopt a node
embedding layer, two attention layers, and 𝜙. 𝑓𝐺(1) , 𝑓𝐺(2) , and 𝑓𝐺(3) pro-
duce an embedding vector 𝑓𝐺 (𝐼) =

[

𝑓𝐺(𝑚) (𝐺(𝑚))
]

=
[

𝑏𝐺(𝑚) ∈ R1×𝑚𝐺(𝑚)
]

,
𝑚= 1, 2, 3. Moreover, 𝑓𝑇 utilizes EfficientNet-B1 (Tan and Le, 2019)
except the last FC layer to generate an embedding vector 𝑓𝑇 (𝐼) = 𝑏𝑇 ∈
R1×𝑚𝑇 . The four feature vectors

{

𝑏𝐺(1) , 𝑏𝐺(2) , 𝑏𝐺(3) , 𝑏𝑇
}

are fed into 𝑓𝐶

that contains multiple classification layers, of which each consists of a
fully connected (FC) layer and a softmax layer. Each of the first three
feature vectors from 𝑓𝐺 is separately fed into a classification layer. The
four feature vectors are concatenated and fed into another classifier
layer to predict a class label.

3.3.1. Graph convolution module
Inspired by Zhou et al. (2019), the 𝑙th graph convolution module

𝜓𝑙 consists of a node embedding layer, a node assignment layer, and
a node pooling layer. Given the node features 𝑍(𝑙−1) ∈ R𝑛𝑙−1×𝑑𝑙−1 and
adjacency matrix 𝐴(𝑙−1) ∈ R𝑛𝑙−1×𝑛𝑙−1 from 𝜓 𝑙−1, the node assignment
layer generates the assignment matrix 𝑆(𝑙) where 𝑆(𝑙)

𝑖,𝑗 ∈ R𝑛𝑙−1×𝑑𝑙 denotes
the probability that the 𝑖th input node is assigned to the 𝑗th hidden
node and the node embedding layer extracts the embedding matrices
𝐻 (𝑙) ∈ R𝑛𝑙−1×𝑛𝑙 , which represent the hidden representation of the input
nodes. Given 𝐻 (𝑙) and 𝑆(𝑙), the node pooling layer clusters the nodes
and produces a coarsened graph with 𝑛𝑙+1 < 𝑛𝑙 nodes.

The node assignment layer conducts a series of three graph con-
volutions and obtains three embeddings

{

ℎ(1), ℎ(2), ℎ(3)
}

, including the
output of each graph convolution, and aggregates them via concate-
nation, i.e., aggregating three-hop neighbor’s information. The node
embedding layer also performs a series of three graph convolutions
and conducts a weighted sum of the three embedding

{

ℎ(1), ℎ(2), ℎ(3)
}

as ∑3
𝑖=1 𝛼

(𝑖)ℎ(𝑖) where 𝛼(𝑖) is a weight for the 𝑖th embedding. To com-
pute these weights, the three embeddings

{

ℎ(1), ℎ(2), ℎ(3)
}

are fed into
a bi-directional LSTM, the forward and backward embeddings are
concatenated and go through a FC layer, generating three outputs
{

𝑜(1), 𝑜(2), 𝑜(3)
}

, and a softmax function is applied to these outputs

𝛼(𝑖) = exp
(

𝑜(𝑖)
)

∑3
𝑗=1 exp(𝑜(𝑗))

. Provided with 𝐻 (𝑙) and 𝑆(𝑙), the node pooling layer

enerates new node features 𝑍(𝑙+1) and a new adjacency matrix 𝐴(𝑙+1)

s follows: 𝑍(𝑙+1) = 𝑆(𝑙)𝑇𝐻 (𝑙) ∈ R𝑛𝑙+1×𝑑𝑙+1 and 𝐴(𝑙+1) = 𝑆(𝑙)𝑇𝐴(𝑙)𝑆(𝑙) ∈
𝑛𝑙+1×𝑛𝑙+1 .

The first two graph convolution modules have an identical structure
ut the last module misses the node assignment layer and node pooling
ayer. From the three modules, we collect the embedding matrices
𝐻 (1),𝐻 (2),𝐻 (3)}, conduct a max operation for each, generating em-
edding vectors, and concatenate them. The concatenated embedding
ectors are fed into a deep set module 𝜙 to produce a permutation
nvariant embedding vector.

.3.2. Deep set module
A deep set module 𝜙 includes a series of three deep set layers,

ollowed by a series of a Dropout layer, an FC layer, an ELU activation
ayer, a Dropout layer, and an FC layer. Dropout layers are imple-
ented using the probability of 0.5. A deep set layer (Zaheer et al.,
5

017) is defined as follows:

=𝜎 (ℎ𝛬 − 1maxpool (ℎ)𝛤 ) (1)

here ℎ∈R𝑛×𝑑 is a set of input embedding vectors, 𝑜∈R𝑛×𝑑′ is a set
f permutation invariant output embedding vectors, 𝜎 is an exponen-
ial linear unit (ELU) activation function, Λ, Γ∈R𝐷×𝐷′ are learnable
arameters, 1=[1,… , 1]𝑇∈R𝑛 is a column vector, and maxpool (⋅) is a
olumn-wise max operation.

.3.3. Attention layer
For 𝑓𝐺(2) and 𝑓𝐺(3) , two attention layers (Ilse et al., 2018) are uti-

ized, of which each employs a series of two FC layers, a transpose layer,
nd a softmax layer. These two attention layers are used to compute
eights associated with local graphs and nodes. Using the weights, the

irst attention layer chooses the most important k local graphs and the
econd attention layer selects the single most representative node.

.4. Entropy-weighted inference

MMGA-Net provides four predictions at multiple levels. During the
esting phase, we make the final prediction by combining these four
redictions via an entropy weighting method. The entropy weighting
cheme is utilized to determine a weight for the 𝑖th prediction given
y:

𝑖 = −

∑𝑛
𝑗=1 𝑝𝑖𝑗 ln(𝑝𝑖𝑗 )

ln(𝑛)
(2)

𝜔𝑖=
1−𝐸𝑖

∑𝑚
𝑖=1 (1−𝐸𝑖)

(3)

where n is the number of classes, 𝐸𝑖 is the entropy of the 𝑖th prediction,
𝑝𝑖𝑗 is the probability of the class j in the 𝑖th prediction, 𝜔𝑖 is the weight
for the 𝑖th prediction, m is the number of predictions (𝑚 = 4). The range
of 𝐸𝑖 is [0, 1]. The larger 𝐸𝑖 is, the greater uncertainty the 𝑖th prediction
has, and thus, the smaller weight it takes.

3.5. Datasets

To examine the effectiveness of the proposed method, we employ
two different types of cancer datasets, including the colorectal can-
cer dataset and the gastric cancer dataset. Table 1 shows the details
of the colorectal and gastric cancer datasets. The colorectal cancer
dataset (Le Vuong et al., 2021) is publicly available.1 It includes two
sets of tissue patches that were digitized using two scanners. The first
set contains 6 colorectal tissue microarrays (TMAs) from 340 patients
and 3 WSIs from 3 patients that were scanned at 40x magnification
using an Aperio digital slide scanner (Leica Biosystems) with a pixel
resolution of 0.2465 μm × 0.2465 μm and 0.2518 μm × 0.2518 μm,
respectively. The second set comprises 45 WSIs from 45 patients that
were scanned at 40x magnification using a NanoZoomer digital slide
scanner (Hamamatsu Photonics K.K.) with a pixel resolution of 0.2253
μm × 0.2253 μm. In the first set, there are 9863 image patches of size
1024 × 1024 pixels, which are divided into training, validation, and
test data (C-Test-I). The second set, designated as C-Test-II, includes
110 260 image patches of size 1144 × 1144 pixels that are resized
to 1024 × 1024 pixels. Upon histologic review, each of these im-
age patches was classified into benign (BN), well-differentiated cancer
(WD), moderately differentiated cancer (MD), and poorly differentiated
cancer (PD).

The gastric cancer dataset contains 96 de-identified WSIs from 96
patients collected between 2016 and 2020 from Kangbuk Samsung Hos-
pital (IRB No. 2021-04-035). The digitized images were taken at 40x
magnification using an Aperio digital slide scanner (Leica Biosystems).

1 https://github.com/QuIIL/KBSMC_colon_cancer_grading_dataset.

https://github.com/QuIIL/KBSMC_colon_cancer_grading_dataset
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Fig. 3. Exemplary tissue images and global and local graphs. (a) Colorectal cancer and (b) gastric cancer.
The size of a WSI is ∼100,000 × ∼80,000 with 0.2635 μm × 0.2635
μm pixel spacing. Each WSI was examined by experienced pathologists
(K. Kim and B. Song) to identify distinct tissue regions, including BN,
tubular well-differentiated adenocarcinoma (TW), tubular moderately-
differentiated adenocarcinoma (TM), and tubular poorly- differentiated
adenocarcinoma (TP). Using these tissue regions, we generated image
patches of size 1024 × 1024 pixels that are split into training, val-
idation, and test data (G-Test). Some exemplary images along with
multi-cell and multi-level graph are shown in Fig. 3.

3.6. Comparative models

3.6.1. CNNs
A number of plain CNN models are employed in this study, in-

cluding DenseNet-121 (Huang et al., 2017), EfficientNet-B0, -B1, and
-B2 (Tan and Le, 2019), and ResNet-34, -50, and -101 (He et al., 2016).
6

Moreover, a multi-task CNN approach, built based upon EfficientNet-
B0, is adopted (Le Vuong et al., 2021). It proposes to re-formulate
cancer grading as categorical and ordinal classification problems and to
jointly conduct the two classifications for cancer grading. As for ordinal
classification, it uses (1) a mean absolute error (MAE) and (2) a mean
square error (MSE) as a loss function. To further improve the learning
capability of the model, it also proposes so called ordinal cross-entropy
loss that converts the output of the ordinal classification into probabil-
ity measures and computes cross-entropy loss. The combination of the
ordinal classification loss and ordinal cross-entropy gives rise to two
models, i.e., 𝑀𝐴𝐸−𝐶𝐸𝑂 and 𝑀𝑆𝐸−𝐶𝐸𝑂 .

3.6.2. ViT
Transformers were first introduced in natural language processing

by Vaswani et al. (2017) and have achieved remarkable success in nu-
merous applications. They were later adapted for vision tasks, resulting
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Table 1
Details of colorectal and gastric cancer datasets.

Colorectal cancer Gastric cancer

Class Training Validation C-Test-I C-Test-II Class Training Validation G-Test

BN 773 374 453 27 986 BN 150 063 29 790 26 221
WD 1866 264 192 8394 TW 14 162 8809 7197
MD 2997 370 738 61 985 TM 20 808 9510 9892
PD 1397 234 205 11 895 TP 27 597 9464 14 386
s

a
T
t
f
t

in Vision Transformers (ViTs) (Dosovitskiy et al., 2020). ViT has been
applied to various medical imaging tasks, including pathological diag-
nosis applications, such as Chen et al. (2022) and Mari et al. (2022). In
ViT, an input image is divided into several patches and passed through
a series of self-attention layers, enabling the model to learn global
dependencies and meaningful representations/embeddings. These em-
beddings are then processed by an MLP head for image classification.

3.6.3. CGC-Net
CGC-Net (Zhou et al., 2019) is a GNN-based model that is specifi-

cally designed to conduct colorectal cancer grading. It includes three
stages of graph convolution and graph pooling modules. To construct a
cell graph, cells are identified by using a nuclear instance map obtained
by SONNET, and edges are formed by using kNN and the Euclidean
distance among cells. In a cell graph, each cell is quantified using
several morphological and texture features. Node embedding features
from the three stages of CGC-Net are concatenated and used to predict
cancer grades.

3.6.4. HACT-Net
HACT-Net (Pati et al., 2022) is another GNN-based model that

exploits both a cell graph and a tissue graph to take into account the
hierarchical relationship between cells and tissue components. A cell
graph is constructed using HoVer-Net (Graham et al., 2019) for cell
segmentation as well as a kNN-based strategy for edge configuration.
As for a tissue graph, tissue components are first identified by using
superpixels, k-means clustering, and iterative merging strategy. Using
the tissue components, a tissue graph is constructed by forming edges
between adjacent tissue components following Potjer (1996). To ob-
tain hierarchical cell-to-tissue graph representation, HACT-Net assigns
cell-to-tissue components according to their spatial locations.

3.6.5. Pathomic fusion
Pathomic fusion (Chen et al., 2020) is a multi-model fusion model

that utilizes both pathology images and genomic information for cancer
diagnosis and prognosis. Pathomic fusion has three streams for model
fusion: a CNN for WSIs, a GNN for a cell graph, and a feed-forward
network for the genomic profile. This generates three sets of multi-
modal features that are fused via Kronecker Product and gating-based
attention. VGG19 is adopted as the architecture of CNN. For the GNN,
nuclei are identified by SONNET and used to construct a cell graph
using kNN and the Euclidean distance among nuclei. A set of manual
and unsupervised cell features are employed to quantify each nucleus.
The manual features include morphological and texture features. The
unsupervised features are extracted using contrastive predictive coding
(CPC) scheme (Henaff, 2020). For our study, we only utilize the first
two streams with CNN and GNN since we do not have the genomics
profile of the two datasets under consideration.

3.7. Training schemes and evaluation metric

3.7.1. Training strategy
MMGA-Net is implemented using PyTorch (Paszke et al., 2017)

alongside PyTorch geometric deep learning package (Fey and Lenssen,
2019). The model is trained for 40 epochs, with three different random
seeds, batch size of 16, Adam optimization with default parameter
values (𝛽 = 0.9, 𝛽 = 0.999, 𝜖 = 1.0𝑒−8) and an initial learning rate of
7

1 2
1.0𝑒−4, which decreases to 1.0𝑒−5 after 20 epochs. In MMGA-Net, three
ets of trainable weights 𝑊 𝐺, 𝑊 𝑇 , and 𝑊 𝐶 that are corresponding to

three branches 𝑓𝐺, 𝑓𝑇 , and 𝑓𝐶 , respectively. 𝑊 𝑇 is initialized with
the pre-trained weights on ImageNet. Cross-entropy loss is employed
to optimize these weights 𝑊 𝐺, 𝑊 𝑇 , and 𝑊 𝐶 .

Moreover, plain CNN models are initialized using pre-trained
weights on ImageNet adopted from Pytorch Library (Paszke et al.,
2017) and optimized by setting the learning rate to 1.0𝑒−5 and using

cosine annealing scheduler, Adam optimizer, and cross-entropy loss.
he number of epochs and batch size are set to 30 and 16, respec-
ively. During the training phase, several augmentations are applied as
ollows: (1) random horizontal flip, (2) random vertical flip, (3) affine
ransformation, and (4) random contrast in a range of [−20, 20]. All

augmentations are adopted from Aleju library.2 ViT is also initialized
by per-trained weights on Imagenet, with hyperparameters such as a
patch-size of 64 × 64 pixels and a number of heads of 8, and a number
of Transformer layers to be 8. All images are downscaled to 512 × 512
pixels for efficient processing while retaining sufficient resolution for
multiclass classification. Global average pooling is adopted to produce
the final feature vector, which is used to obtain the logit. Then, class
probabilities are calculated using the SoftMax operation. The two multi-
task CNN models (𝑀𝐴𝐸−𝐶𝐸𝑂 and 𝑀𝑆𝐸−𝐶𝐸𝑂 ) and three GNN models
(CGC-Net, HACT-Net, and Pathomic Fusion) are optimized by following
the training strategy of the original papers. All the image patches are
resized, if necessary, to 1024 × 1024 pixels.

3.7.2. Evaluation metrics
We employ three evaluation metrics to assess the performance of

MMGA-Net and other comparative models, including accuracy (Acc),
macro average F1-score (F1), and quadratic weighted kappa (𝜅𝑤) (Co-
hen, 1968). Acc is the ratio of the number of correctly classified
instances over total number of instances. F1 is computed as the har-
monic mean of the average precision and recall. 𝜅𝑤 is calculated as
𝜅𝑤 = 1−

∑𝑛
𝑖
∑𝑛
𝑗 𝑤𝑖𝑗 𝑐𝑖𝑗

∑𝑛
𝑖
∑𝑛
𝑗 𝑤𝑖𝑗𝑔𝑖𝑗

where 𝑤𝑖𝑗 =
(𝑖−𝑗)2

(𝑛−1)2 and 𝑐𝑖𝑗 and 𝑔𝑖𝑗 are the predicted

and expected proportions for the predicted class 𝑖 and ground truth
class 𝑗, respectively.

4. Results

4.1. Classification results on colorectal cancer tissues

Table 2 summarizes the results of colorectal cancer grading by
MMGA-Net in comparison to other comparative methods. MMGA-Net
obtained 88.55% Acc, 0.865 F1, and 0.952 𝜅𝑤 in C-Test-I and 80.92%
Acc, 0.751 F1, and 0.890 𝜅𝑤 in C-Test-II. In comparison to other com-
peting models, MMGA-Net consistently obtained superior performance
regardless of the type of test datasets and evaluation metrics except
𝜅𝑤 in C-Test-II. Among other competing models, the multi-task CNN
models (𝑀𝐴𝐸−𝐶𝐸𝑂 and 𝑀𝑆𝐸−𝐶𝐸𝑂 ) showed better performance than
others. Excluding these multi-task CNN models, GNN-based models,
in general, demonstrated better (or comparable) performance than
plain CNN-based models. HACT-Net, a GNN-based model that utilizes
both a cell graph and a tissue graph, achieved better performance

2 https://github.com/aleju/imgaug.

https://github.com/aleju/imgaug
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Table 2
Comparative results for colorectal and gastric cancer grading.

Model C-Test-I

Acc (%) F1 𝜅𝑤
DenseNet-121 (Huang et al., 2017) 81.37 ± 1.717 0.730 ± 0.034 0.868 ± 0.013
ResNet-34 (He et al., 2016) 86.26 ± 1.362 0.819 ± 0.010 0.914 ± 0.009
ResNet-50 (He et al., 2016) 84.61 ± 0.738 0.814 ± 0.036 0.929 ± 0.005
ResNet-101 (He et al., 2016) 83.20 ± 1.827 0.780 ± 0.025 0.896 ± 0.018
EfficientNet-B0 (Tan and Le, 2019) 85.72 ± 0.724 0.807 ± 0.010 0.929 ± 0.008
EfficientNet-B1 (Tan and Le, 2019) 86.71 ± 0.317 0.830 ± 0.004 0.939 ± 0.005
EfficientNet-B2 (Tan and Le, 2019) 85.91 ± 1.874 0.834 ± 0.024 0.939 ± 0.017
ViT (Dosovitskiy et al., 2020) 84.29 ± 1.207 0.815 ± 0.013 0.927 ± 0.014
𝑀𝐴𝐸−𝐶𝐸𝑂 (Le Vuong et al., 2021) 87.73 ± 0.617 0.844 ± 0.013 0.941 ± 0.004
𝑀𝐴𝐸−𝐶𝐸𝑂 (Le Vuong et al., 2021) 88.44 ± 0.537 0.859 ± 0.011 0.942 ± 0.007
CGC-Net (Zhou et al., 2019) 85.40 ± 1.980 0.791 ± 0.028 0.920 ± 0.016
Pathomic Fusion (Chen et al., 2020) 86.19 ± 1.628 0.821 ± 0.024 0.936 ± 0.020
HACT-Net (Pati et al., 2022) 86.95 ± 1.375 0.835 ± 0.013 0.939 ± 0.017
MMGA-Net (ours) 88.55 ± 0.710 0.865 ± 0.010 0.952 ± 0.007

Model C-Test-II

Acc (%) F1 𝜅𝑤
DenseNet-121 (Huang et al., 2017) 71.19 ± 1.809 0.656 ± 0.029 0.827 ± 0.021
ResNet-34 (He et al., 2016) 74.05 ± 1.860 0.676 ± 0.014 0.851 ± 0.009
ResNet-50 (He et al., 2016) 72.91 ± 0.874 0.684 ± 0.009 0.856 ± 0.007
ResNet-101 (He et al., 2016) 70.05 ± 1.463 0.660 ± 0.010 0.839 ± 0.013
EfficientNet-B0 (Tan and Le, 2019) 75.37 ± 0.919 0.698 ± 0.013 0.856 ± 0.019
EfficientNet-B1 (Tan and Le, 2019) 76.63 ± 1.081 0.709 ± 0.015 0.863 ± 0.018
EfficientNet-B2 (Tan and Le, 2019) 75.72 ± 1.956 0.699 ± 0.0187 0.863 ± 0.010
ViT (Dosovitskiy et al., 2020) 76.47 ± 1.890 0.703 ± 0.017 0.860 ± 0.009
𝑀𝐴𝐸−𝐶𝐸𝑂 (Le Vuong et al., 2021) 80.35 ± 0.941 0.745 ± 0.019 0.892 ± 0.009
𝑀𝐴𝐸−𝐶𝐸𝑂 (Le Vuong et al., 2021) 79.17 ± 0.884 0.738 ± 0.015 0.875 ± 0.008
CGC-Net (Zhou et al., 2019) 75.35 ± 2.567 0.692 ± 0.012 0.855 ± 0.023
Pathomic Fusion (Chen et al., 2020) 77.20 ± 1.593 0.710 ± 0.020 0.859 ± 0.017
HACT-Net (Pati et al., 2022) 78.30 ± 1.870 0.729 ± 0.019 0.871 ± 0.020
MMGA-Net (ours) 80.92 ± 1.229 0.751 ± 0.015 0.890 ± 0.008

Model G-Test

Acc (%) F1 𝜅𝑤
DenseNet-121 (Huang et al., 2017) 72.91 ± 1.421 0.720 ± 0.034 0.818 ± 0.024
ResNet-34 (He et al., 2016) 83.85 ± 0.922 0.983 ± 0.007 0.897 ± 0.014
ResNet-50 (He et al., 2016) 82.28 ± 0.981 0.897 ± 0.007 0.885 ± 0.017
ResNet-101 (He et al., 2016) 81.05 ± 1.021 0.750 ± 0.014 0.822 ± 0.016
EfficientNet-B0 (Tan and Le, 2019) 84.13 ± 0.776 0.891 ± 0.006 0.901 ± 0.009
EfficientNet-B1 (Tan and Le, 2019) 83.92 ± 0.580 0.785 ± 0.008 0.894 ± 0.017
EfficientNet-B2 (Tan and Le, 2019) 83.48 ± 0.781 0.780 ± 0.018 0.929 ± 0.014
ViT (Dosovitskiy et al., 2020) 83.27 ± 1.027 0.781 ± 0.019 0.918 ± 0.011
𝑀𝐴𝐸−𝐶𝐸𝑂 (Le Vuong et al., 2021) 83.70 ± 0.385 0.784 ± 0.007 0.929 ± 0.012
𝑀𝐴𝐸−𝐶𝐸𝑂 (Le Vuong et al., 2021) 84.39 ± 1.804 0.791 ± 0.012 0.931 ± 0.019
CGC-Net (Zhou et al., 2019) 84.70 ± 1.499 0.790 ± 0.014 0.910 ± 0.016
Pathomic Fusion (Chen et al., 2020) 84.81 ± 0.795 0.799 ± 0.012 0.902 ± 0.008
HACT-Net (Pati et al., 2022) 85.87 ± 1.801 0.808 ± 0.007 0.921 ± 0.008
MMGA-Net (ours) 87.32 ± 0.384 0.834 ± 0.007 0.936 ± 0.010
f
t

4

T
c
a

among GNN-based models. CGC-Net was inferior to other GNN-based
models. Moreover, regarding plain CNN-based models, EfficientNet-
B1 produced the best results. DenseNet-121 and ResNet-101, however,
were the two worst models.

In a head-to-head comparison between C-Test-I and C-Test-II, there
was a consistent performance drop for all the models under consid-
eration; approximately 8.00% ∼ 12.00% in Acc, 0.07 ∼ 0.14 in F1,
and 0.04 ∼ 0.08 in 𝜅𝑤. This is likely due to the difference between
he two datasets as described in Section 3.5. C-Test-II was acquired
sing a different digital scanner and at a different time from the
raining and validation datasets for model training, whereas C-Test-I
as obtained from the same patient population using the same digital

canner. As mentioned above, MMGA-Net, in general, outperformed
ther models on C-Test-II, which indicates the superior robustness of
he model to the domain shift due to digital scanners. Among other
odels, 𝑀𝐴𝐸−𝐶𝐸𝑂 demonstrated a lower performance drop than

thers; however, 𝑀𝑆𝐸−𝐶𝐸𝑂 produced a larger performance drop than
NN-based models. GNN-based models, in general, demonstrated lower
erformance drop than plain CNN-based models. Within the GNN-based
odels, CGC-Net obtained the poorest performance. As for plain CNN-
8

ased models, the decrease in performance was more or less the same
or all models. EfficientNet-B1 showed the lowest performance drop
han other plain CNN-based models.

.2. Classification results on gastric cancer tissues

Classification results on the gastric cancer dataset are available in
able 2. Overall, similar observations with the results on the colorectal
ancer datasets were made on the gastric cancer dataset. MMGA-Net
chieved 87.32% Acc, 0.834 F1, and 0.936 𝜅𝑤, outperforming other

competing models. Among other competing models, the results were
inconsistent with those in C-Test-I and C-Test-II. HACT-Net was second
to MMGA-Net. GNN-based models were superior to plain and multi-task
CNN-based models. CGC-Net was poorer than other GNN-based models.
Among plain CNN-based models, EfficientNet-B1 obtained the best
results. DenseNet-121 was the worst model in gastric cancer grading.
These results suggest that our approach is not specific to a particular
type of cancer or dataset and applies to other types of cancers or

diseases.
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Table 3
Results for ablation experiments on multi-level graphs.

Model C-Test-I

Acc (%) F1 𝜅𝑤
𝑓𝐺(1) 86.45 ± 0.007 0.819 ± 0.011 0.933 ± 0.009
𝑓𝐺(2) + 𝑓𝐺(3) 86.15 ± 1.170 0.825 ± 0.013 0.937 ± 0.011
𝑓 𝑇 86.71 ± 0.317 0.830 ± 0.004 0.939 ± 0.005
𝑓𝐺(1) + 𝑓 𝑇 87.83 ± 0.354 0.855 ± 0.011 0.947 ± 0.013
𝑓𝐺(2) + 𝑓𝐺(3) + 𝑓 𝑇 87.09 ± 0.718 0.835 ± 0.013 0.942 ± 0.008
𝑓𝐺(1) + 𝑓𝐺(2) + 𝑓𝐺(3) 86.92 ± 1.047 0.831 ± 0.008 0.940 ± 0.007
MMGA-Net (ours) 88.55 ± 0.710 0.868 ± 0.010 0.950 ± 0.007

Model C-Test-II

Acc (%) F1 𝜅𝑤
𝑓𝐺(1) 76.60 ± 1.364 0.705 ± 0.012 0.858 ± 0.017
𝑓𝐺(2) + 𝑓𝐺(3) 76.16 ± 1.373 0.708 ± 0.012 0.862 ± 0.017
𝑓 𝑇 76.63 ± 1.081 0.709 ± 1.015 0.863 ± 0.018
𝑓𝐺(1) + 𝑓 𝑇 79.20 ± 1.455 0.738 ± 0.009 0.886 ± 0.007
𝑓𝐺(2) + 𝑓𝐺(3) + 𝑓 𝑇 77.12 ± 1.094 0.712 ± 0.013 0.868 ± 0.014
𝑓𝐺(1) + 𝑓𝐺(2) + 𝑓𝐺(3) 78.31 ± 1.428 0.726 ± 0.014 0.870 ± 0.012
MMGA-Net (ours) 80.92 ± 1.229 0.756 ± 0.013 0.887 ± 0.009

Model G-Test

Acc (%) F1 𝜅𝑤
𝑓𝐺(1) 84.07 ± 1.059 0.792 ± 0.018 0.899 ± 0.015
𝑓𝐺(2) + 𝑓𝐺(3) 83.84 ± 1.338 0.790 ± 0.010 0.893 ± 0.010
𝑓 𝑇 83.92 ± 0.580 0.785 ± 0.008 0.894 ± 0.017
𝑓𝐺(1) + 𝑓 𝑇 86.51 ± 1.091 0.820 ± 0.011 0.928 ± 0.009
𝑓𝐺(2) + 𝑓𝐺(3) + 𝑓 𝑇 84.22 ± 1.617 0.794 ± 0.018 0.903 ± 0.008
𝑓𝐺(1) + 𝑓𝐺(2) + 𝑓𝐺(3) 84.67 ± 1.354 0.796 ± 0.016 0.915 ± 0.015
MMGA-Net (ours) 87.32 ± 0.384 0.840 ± 0.009 0.935 ± 0.010

Table 4
Results for ablation experiments on multi-cell type graphs.

Model C-Test-I

Acc (%) F1 𝜅𝑤

𝑓𝐺
(1)
𝐸 82.25 ± 1.002 0.746 ± 0.015 0.880 ± 0.018

𝑓𝐺
(1)
𝐿 78.09 ± 1.409 0.719 ± 0.007 0.840 ± 0.017

𝑓𝐺
(1)
𝐸+𝐿 84.62 ± 1.808 0.811 ± 0.009 0.931 ± 0.008

𝑓𝐺(1) 86.45 ± 0.007 0.819 ± 0.011 0.933 ± 0.009

Model C-Test-II

Acc (%) F1 𝜅𝑤

𝑓𝐺
(1)
𝐸 71.86 ± 1.804 0.670 ± 0.017 0.843 ± 0.019

𝑓𝐺
(1)
𝐿 64.98 ± 1.857 0.610 ± 0.017 0.775 ± 0.021

𝑓𝐺
(1)
𝐸+𝐿 72.75 ± 1.510 0.673 ± 0.012 0.855 ± 0.013

𝑓𝐺(1) 76.60 ± 1.364 0.705 ± 0.012 0.858 ± 0.017

Model G-Test

Acc (%) F1 𝜅𝑤

𝑓𝐺
(1)
𝐸 80.71 ± 1.581 0.755 ± 0.019 0.853 ± 0.016

𝑓𝐺
(1)
𝐿 72.91 ± 1.149 0.727 ± 0.023 0.809 ± 0.017

𝑓𝐺
(1)
𝐸+𝐿 81.60 ± 1.502 0.760 ± 0.010 0.855 ± 0.014

𝑓𝐺(1) 84.07 ± 1.059 0.792 ± 0.018 0.899 ± 0.015

4.3. Ablation studies

We conducted exhaustive ablation experiments on MMGA-Net to
further assess the classification results and to gain insights into the
model. Specifically, the ablation experiments sought to analyze the
effect of (1) multi-level graphs, (2) multi-cell type graphs, and (3)
aggregation mechanisms on MMGA-Net.

4.3.1. Role of multi-level graphs in cancer grading
MMGA-Net analyzed tissues at multiple levels, including a tissue-

level (𝑓𝑇 ) and two cellular levels, i.e., global and local cell-to-cell
nteractions (𝑓𝐺(1) and 𝑓𝐺(2) +𝑓𝐺(3) ). We examined the effect of each of
hese levels and their combinations. The detailed results are described
n Table 3. Using the information from a single level only, there was a
onsistent performance drop as compared to MMGA-Net; for instance,
9
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≥2.06% Acc, ≥4.32% Acc, and ≥3.25% Acc for C-Test-I, C-Test-II, and G-
est, respectively. However, the global graph (𝑓𝐺(1) ) and local graphs
𝑓𝐺(2) + 𝑓𝐺(3) ) alone were comparable to other GNN-based models
CGC-Net, Pathomic Fusion, and HACT-Net). The combination of the
nformation from any two levels consistently provided an increase in
he performance, which of each is superior to most of the CNN- and
NN-based models (Tables 2 and 3). Among the tissue-level informa-

ion and cellular level graphs, there was a larger synergy between
he global cell-to-cell interaction (𝑓𝐺(1) ) and tissue-level information
𝑓𝑇 ) in comparison to other combinations, including the combination
mong cell graphs (𝑓𝐺(1) , 𝑓𝐺(2) , 𝑓𝐺(3) ) and the combination between
ocal graphs (𝑓𝐺(2) , 𝑓𝐺(3) ) and tissue-level information (𝑓𝑇 ).

.3.2. Role of multi-cell type graphs in cancer grading
MMGA-Net utilizes three types of cell graphs, i.e., graphs for ep-

thelial cells only (𝑓𝐺𝐸 ), lymphocytes only (𝑓𝐺𝐿 ), and both epithelial
ells and lymphocytes (𝑓𝐺𝐸+𝐿 ). To investigate the role of different
ypes of cell graphs in MMGA-Net, we conducted cancer grading using
ach type of cell graph in 𝑓𝐺(1) . Table 4 demonstrates the results
f the ablation experiments on multi-cell type graphs. Among 𝑓𝐺

(1)
𝐸 ,

𝐺(1)
𝐿 , and 𝑓𝐺

(1)
𝐸+𝐿 , 𝑓𝐺

(1)
𝐸+𝐿 achieved the best performance, suggesting that

t is advantageous to construct a single cell graph for multiple cell
ypes in comparison to a cell graph using a single cell type. However,
𝐺(1) substantially outperforms 𝑓𝐺

(1)
𝐸 , 𝑓𝐺

(1)
𝐿 , and 𝑓𝐺

(1)
𝐸+𝐿 ; for example, an

cc of ≥1.83%, ≥3.85%, and ≥2.47% in C-Test-I, C-Test-II, and G-Test,
espectively. These results clearly demonstrate that the construction
nd integration of multi-cell type graphs aid in analyzing pathology
mages and improving cancer grading.

.3.3. Role of aggregation mechanism in cancer grading
MMGA-Net aggregates multiple tissues and cellular information to

redict a cancer grade. To explore the effectiveness of the aggregation
echanism in MMGA-Net, we replaced the entropy weighting scheme
ith (1) hard (majority) voting and (2) soft voting. Hard voting takes

he majority of the class labels that are predicted by the four tissue and
ellular levels. Soft voting weights the vote by the probability of each
lass over the four predictions and takes the class label with the highest
alue. As shown in Table 5, the results show that the entropy weighting
cheme was superior to two other aggregation methods regardless of
he test datasets.

Furthermore, we examined the effect of invariant feature repre-
entations on cancer grading. For each of MMGA-Net, a global graph
𝑓𝐺(1) ), and local graphs (𝑓𝐺(2)+𝐺(3) ), we performed cancer grading
ithout deep set modules (𝜙). Table 6 demonstrates the experimental

esults with and without 𝜙. The addition of the deep set modules con-
istently improved the classification performance for the three datasets.
hese indicate that the feature representations that are invariant to the
rder of nodes and cells in both global and local graphs play a vital
ole in graph-based pathology image analysis.

. Discussion

GNNs have been shown to be effective for pathology image analysis.
he primary advantage of GNNs is the ability to exploit character-

stics of individual histological objects, including glands, cells, etc.,
as a node) and their relationships (as an edge). This is in line with
he current practice of pathology where pathologists assess various
inds of histological objects and their arrangements and distributions
o make a definitive decision. For cancer diagnosis, various hand-
rafted features have been adopted to extract and quantify individual
istological objects and their relationships in conventional computa-
ional pathology. CNN-based approaches, in general, do not explicitly
dentify and utilize individual histological objects; they rather process
issue images as a whole. Some proposed a hybrid approach where

oth conventional approaches and CNN-based methods are employed
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Table 5
Results for ablation experiments on aggregation methods.

Method C-Test-I

Acc (%) F1 𝜅𝑤
Hard voting 87.30 ± 1.130 0.840 ± 0.013 0.941 ± 0.018
Soft voting 87.99 ± 1.821 0.856 ± 0.019 0.950 ± 0.017
Entropy weighting (ours) 88.55 ± 0.710 0.865 ± 0.010 0.952 ± 0.007

Method C-Test-II

Acc (%) F1 𝜅𝑤
Hard voting 78.73 ± 2.01 0.730 ± 0.019 0.881 ± 0.015
Soft voting 79.88 ± 1.117 0.746 ± 0.009 0.890 ± 0.016
Entropy weighting (ours) 80.92 ± 1.229 0.751 ± 0.015 0.890 ± 0.008

Method G-Test

Acc (%) F1 𝜅𝑤
Hard voting 86.15 ± 1.321 0.810 ± 0.015 0.929 ± 0.016
Soft voting 86.78 ± 0.961 0.831 ± 0.011 0.932 ± 0.012
Entropy weighting (ours) 87.32 ± 0.384 0.834 ± 0.007 0.936 ± 0.010

Table 6
Results for ablation experiments on deep set modules.

Model C-Test-I

Acc (%) F1 𝜅𝑤
𝑓𝐺(1) w.o. 𝜙 85.69 ± 1.500 0.819 ± 0.010 0.931 ± 0.010
𝑓𝐺(1) 86.45 ± 0.007 0.819 ± 0.011 0.933 ± 0.009
𝑓𝐺(2) + 𝑓𝐺(3) w.o. 𝜙 84.58 ± 0.931 0.815 ± 0.012 0.931 ± 0.014
𝑓𝐺(2) + 𝑓𝐺(3) 86.15 ± 1.170 0.825 ± 0.013 0.937 ± 0.011
MMGA-Net w.o. 𝜙 86.24 ± 1.161 0.820 ± 0.016 0.935 ± 0.011
MMGA-Net (ours) 88.55 ± 0.710 0.868 ± 0.010 0.950 ± 0.007

Model C-Test-II

Acc (%) F1 𝜅𝑤
𝑓𝐺(1) w.o. 𝜙 74.29 ± 1.500 0.686 ± 0.010 0.847 ± 0.010
𝑓𝐺(1) 76.60 ± 1.364 0.705 ± 0.012 0.858 ± 0.017
𝑓𝐺(2) + 𝑓𝐺(3) w.o. 𝜙 72.89 ± 0.910 0.682 ± 0.013 0.842 ± 0.014
𝑓𝐺(2) + 𝑓𝐺(3) 76.16 ± 1.373 0.708 ± 0.012 0.862 ± 0.017
MMGA-Net w.o. 𝜙 76.26 ± 1.070 0.707 ± 0.012 0.868 ± 0.014
MMGA-Net (ours) 80.92 ± 1.229 0.756 ± 0.013 0.887 ± 0.009

Model G-Test

Acc (%) F1 𝜅𝑤
𝑓𝐺(1) w.o. 𝜙 83.25 ± 1.500 0.780 ± 0.010 0.891 ± 0.010
𝑓𝐺(1) 84.07 ± 1.059 0.792 ± 0.018 0.899 ± 0.015
𝑓𝐺(2) + 𝑓𝐺(3) w.o. 𝜙 83.89 ± 1.334 0.779 ± 0.012 0.891 ± 0.013
𝑓𝐺(2) + 𝑓𝐺(3) 83.84 ± 1.338 0.790 ± 0.010 0.893 ± 0.010
MMGA-Net w.o. 𝜙 83.85 ± 2.030 0.790 ± 0.016 0.900 ± 0.019
MMGA-Net (ours) 87.32 ± 0.384 0.840 ± 0.009 0.935 ± 0.010

to extract hand-crafted features and CNN-driven features. MMGA-Net
utilizes both CNN and GNNs to characterize tissue images. For GNNs,
we quantify each nucleus by using 17 hand-crafted features and 1280
CNN-based features. Among 1297 features, we select 50 features that
are most predictive for cancer types. In this regard, MMGA-Net can be
considered a type of hybrid approach for cancer grading.

In pathology image analysis, tissue images are often processed and
analyzed at multiple scales, resolutions, and levels. The effectiveness of
such an approach has already been proved in literature (Kwak and He-
witt, 2017; Le Trinh et al., 2021). However, prior works of GNNs have
mainly focused on representing and utilizing cell-to-cell interactions at
a single level. In Pati et al. (2022), a hierarchical graph representation,
which employs both a tissue graph and a cell graph, demonstrated a
substantial performance gain in breast cancer subtyping. MMGA-Net
builds cell graphs at multiple levels, including a global graph and
two levels of local graphs, outperforming the other competing models.
Similar results were also found for prostate cancer classification (Sup-
plementary Table 3 and 4). The superior performance of MMGA-Net on
colorectal, gastric, and prostate cancer datasets further emphasizes the
importance of multilevel analysis in GNNs.

There exist various types of cells in tissues, which of each has
unique functional and histological meanings. For instance, most tumors
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originate from epithelial cells, which lose cell-to-cell adhesion and
cellular polarity in tumors (Coradini et al., 2011). A lymphocyte is a
type of white blood cell that is an essential part of an immune system.
Tumor-infiltrating lymphocytes (TILs) are, in particular, significantly
associated with tumor prognosis (Elomaa et al., 2022; Kurozumi et al.,
2019). However, none of the previous GNN-based approaches has
differentiated and used differing cell types in constructing cell graphs,
i.e., ignoring the functional and histological differences among them.
MMGA-Net builds three types of cell graphs using epithelial cells only,
lymphocytes only, and both epithelial cells and lymphocytes. In this
manner, MMGA-Net exploits both intra- and inter-cell type interac-
tions, leading to an improved representation and characterization of
tissue/cellular structures for cancer diagnosis.

There are several limitations to this study. First, we built and tested
MMGA-Net and other competing methods using image patches similar
to previous studies (Chen et al., 2020; Pati et al., 2022; Zhou et al.,
2019). A majority of image patches were obtained from WSIs; however,
MMGA-Net has not been evaluated at the WSI level. In the follow-up
study, we will extend MMGA-Net to directly process and analyze WSIs
for cancer diagnosis. Second, we generated two sets of local graphs by
setting the size of local regions to 512 × 512 pixels and 256 × 256
pixels, respectively. Varying the size, numerous local graphs can be
built. Further optimizing the size and number of local regions for the
graph construction will help to improve the graph representation of his-
tological objects and pathology images. Third, two cell types, including
epithelial cells and lymphocytes, were utilized in this study. There are
several cell types, which of each has implications for cancer diagnosis.
Other cell types can be integrated into GNNs to further extend our
approach. Fourth, several nuclear features were selected to characterize
individual cells before graph construction and graph-based learning as
done in other studies (Chen et al., 2020; Pati et al., 2022; Zhou et al.,
2019). Although such nuclear features have been known to be related to
cancer diagnosis, the effect of each of the nuclear features on the graph
representation and learning is unclear. From our observations, all three
types of nuclear features (intensity-, texture-, and shape-based features)
are substantially contributable to cancer diagnosis (see Supplementary
Table 1 and 2). Fifth, we extracted tissue-level features by CNN and
combined them with cell-level features that were obtained from GNNs
at multiple scales. Similar to cell-level features, tissue-level features can
be extracted by GNNs. We can further extend our method by incor-
porating tissue-level features obtained by GNNs and investigating the
relationship between tissue- and cell-level features for cancer grading.
Sixth, two sampling strategies were employed in our study to build
cellular graphs. As we include >50% of cells that are dispersed in an
image, there is still a chance that we miss some of the important cells
for cancer grading. However, the experimental results were consistent
across different datasets, suggesting that the two sampling strategies
can include many of such important cells that are necessary for cancer
grading. Even though we miss some important cells, it was the multi-
cell graphs at multiple scales that can make proper decisions as shown
in the experiments. Seventh, we utilized three types of cell graphs
(𝑓𝐺(1) , 𝑓𝐺(2) , 𝑓𝐺(3) ) to analyze tissue at multiple scales. The global cell
raph (𝑓𝐺(1) ) is, in particular, designed to investigate the global cell-
o-cell interactions, i.e., long-range cell interactions, to analyze the
acrostructure of tissues; however, it has not been assessed whether

he global cell graph did exploit the long-range cell interactions and
acrostructure of tissues in our study. The future study will entail

urther investigation and interpretation of the global cell graphs and
ell interactions with respect to macrostructure of tissues. Eighth, we
mployed multiple cell type graphs to conduct cancer classification by
using the prediction results of the cell graphs, which can be considered
s a late fusion approach. However, there are other alternative ways
o combine different cell type information such as incorporating cell
ype predictions into the nuclear features, i.e., an early fusion method,
hich is left for future research Last, a single gastric cancer dataset was
mployed. Additional datasets and experiments on them will further

trengthen our findings on GNNs and gastric cancer diagnosis.
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